遥感技术与应用 2023, Vol. 38 Issue (5): 1081-1091 DOI: 10.11873/j.issn.1004-0323.2023.5.1081 |
数据与图像处理 |
|
|
|
|
基于CenterNet的改进遥感旋转目标检测 |
刘鑫1( ),黄进1( ),杨瑛玮1,李剑波2 |
1.西南交通大学 电气工程学院,四川 成都 611756 2.西南交通大学 计算机与人工智能学院,四川 成都 611756 |
|
Improved Remote Sensing Rotating Object Detection based on CenterNet |
Xin LIU1( ),Jin HUANG1( ),Yingwei YANG1,Jianbo LI2 |
1.School of Electrical Engineering,Southwest Jiaotong University,Chengdu,Sichuan 611756,China 2.School of Computer and Artificial Intelligence,Southwest Jiaotong University,Chengdu,Sichuan 611756,China |
引用本文:
刘鑫,黄进,杨瑛玮,李剑波. 基于CenterNet的改进遥感旋转目标检测[J]. 遥感技术与应用, 2023, 38(5): 1081-1091.
Xin LIU,Jin HUANG,Yingwei YANG,Jianbo LI. Improved Remote Sensing Rotating Object Detection based on CenterNet. Remote Sensing Technology and Application, 2023, 38(5): 1081-1091.
链接本文:
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.5.1081
或
http://www.rsta.ac.cn/CN/Y2023/V38/I5/1081
|
1 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥ Proceedings of the IEEE conference on computer vision and pattern recognition, 2014: 580-587.
|
2 |
GIRSHICK R. Fast R-CNN[C]∥ Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
|
3 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks [S]. Advances in Neural Information Processing Systems, 2015, 28.
|
4 |
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]∥ Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition. 2016: 779-788.
|
5 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]∥ Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition. 2017: 7263-7271.
|
6 |
REDMON J, FARHADI A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv:, 2018.
|
7 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
|
8 |
ZHANG H, WU C, ZHANG Z,et al.Resnest: Split-attention networks[C]∥ Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 2736-2746.
|
9 |
LAW H, DENG J. Cornernet: Detecting objects as paired keypoints[C]∥ Proceedings of the European Conference on Computer Vision (ECCV). 2018: 734-750.
|
10 |
ZHOU X, ZHUO J, KRAHENBUHL P. Bottom-up object detection by grouping extreme and center points[C]∥ Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 850-859.
|
11 |
ZHOU X, WANG D, KRÄHENBÜHL P. Objects as points [S]. arXiv preprint arXiv:, 2019.
|
12 |
YANG X, YAN J, FENG Z, et al. R3det: Refined single-stage detector with feature refinement for rotating object[C]∥ Proceedings of the AAAI Conference On Artificial Intelligence. 2021, 35(4): 3163-3171.
|
13 |
YANG X, YANG J, YAN J, et al. Scrdet: Towards more robust detection for small,cluttered and rotated objects[C]∥ Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 8232-8241.
|
14 |
DING J, XUE N, LONG Y, et al. Learning roi transformer for oriented object detection in aerial images[C]∥ Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 2849-2858.
|
15 |
IANG Y, ZHU X, WANG X, et al. R2CNN: Rotational region CNN for orientation robust scene text detection [S]. arXiv preprint arXiv:, 2017.
|
16 |
LIU Z, HU J, WENG L, et al. Rotated region based CNN for ship detection[C]∥ 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017: 900-904.
|
17 |
AZIMI S M,VIG E, BAHMANYAR R,et al. Towards multi-class object detection in unconstrained remote sensing imagery[C]∥ Computer Vision-ACCV 2018: 14th Asian Conference on Computer Vision,Perth,Australia, December 2-6, 2018 , Revised Selected Papers, Part III. Cham: Springer International Publishing, 2019: 150-165.
|
18 |
YANG X, YAN J, LIAO W, et al. Scrdet++: Detecting small, cluttered and rotated objects via instance-level feature denoising and rotation loss smoothing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(2): 2384-2399.
|
19 |
YANG X, YAN J. On the arbitrary-oriented object detection: Classification based approaches revisited[J]. International Journal of Computer Vision, 2022, 130(5): 1340-1365.
|
20 |
YANG X, HOU L, ZHOU Y, et al. Dense label encoding for boundary discontinuity free rotation detection[C]∥ Proceedings of the IEEE/CVF Conference On Computer Vision and pattern recognition. 2021: 15819-15829.
|
21 |
LU J, LI T, MA J,et al.SAR:Single-stage anchor-free rotating object detection[J]. IEEE Access,2020,8:205902-205912.
|
22 |
HE X, MA S, HE L, et al. Learning rotated inscribed ellipse for oriented object detection in remote sensing images[J]. Remote Sensing, 2021, 13(18): 3622.
|
23 |
SONG WENGLONG, TANG RUI, YANG KUN, et al. An annotation method of arbitrary-oriented rectangle b-box and analysis of its application in remote sensing object detection[J].Journal of China Institute Water Resources and Hydropower Research,2021,19(1):165172.宋文龙,唐锐,杨昆,等.一种倾斜矩形范围框标注方式及遥感目标检测应用分析[J].中国水利水电科学研究院学报, 2021,19(1):165-172.
|
24 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 2117-2125.
|
25 |
YANG X, SUN H, SUN X, et al. Position detection and direction prediction for arbitrary-oriented ships via multitask rotation region convolutional neural network[J]. IEEE Access, 2018, 6: 50839-50849.
|
26 |
WANG J, DING J, GUO H, et al. Mask OBB: A semantic attention-based mask oriented bounding box representation for multi-category object detection in aerial images[J]. Remote Sensing, 2019, 11(24): 2930.
|
27 |
FU Y, WU F, ZHAO J. Context-aware and depthwise-based detection on orbit for remote sensing image[C]∥ 2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018: 1725-1730.
|
28 |
HAN K, WANG Y, TIAN Q, et al. Ghostnet: More features from cheap operations[C]∥ Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1580-1589.
|
29 |
MA N, ZHANG X, LIU M, et al. Activate or not: Learning customized activation[C]∥ Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 8032-8042.
|
30 |
CAO Y, XU J, LIN S, et al. Gcnet: Non-local networks meet squeeze-excitation networks and beyond[C]∥ Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. 2019: 0-0.
|
31 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]∥ Proceedings of the IEEE International Conference on Computer Vision. 2017: 2980-2988.
|
32 |
CHEN Z, CHEN K, LIN W, et al. Piou loss: Towards accurate oriented object detection in complex environments[C]∥ Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part V 16. Springer International Publishing, 2020: 195-211.
|
33 |
ZHU H, CHEN X, DAI W, et al. Orientation robust object detection in aerial images using deep convolutional neural network[C]∥ 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015: 3735-3739.
|
34 |
MING Q, MIAO L, ZHOU Z,et al.Optimization for arbitrary-oriented object detection via representation invariance loss[J]. IEEE Geoscience and Remote Sensing Letters,2021,19:1-5.
|
35 |
LIN Y, FENG P, GUAN J, et al. IENet: Interacting embranchment one stage anchor free detector for orientation aerial object detection [S]. arXiv preprint arXiv:, 2019.
|
36 |
XIAO Z, QIAN L, SHAO W, et al. Axis learning for orientated objects detection in aerial images[J]. Remote Sensing, 2020, 12(6): 908.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|