遥感技术与应用 2023, Vol. 38 Issue (5): 1107-1117 DOI: 10.11873/j.issn.1004-0323.2023.5.1107 |
数据与图像处理 |
|
|
|
|
基于编码对齐生成对抗网络的异源遥感影像地表覆被变化检测方法 |
张成才1( ),刘威1,杨峰2,彭凯1( ),周雪丽3 |
1.黄河实验室(郑州大学),河南 郑州 450001 2.河南省出山店水库建设管理局,河南 信阳 464000 3.河南省地图院,河南 郑州 450003 |
|
Change Detection Method for Surface Cover of Heterogeneous Remote Sensing Image based on Code-Aligned Generative Adversarial Network |
Chengcai ZHANG1( ),Wei LIU1,Feng YANG2,Kai PENG1( ),Xueli ZHOU3 |
1.Yellow River Laboratory (Zhengzhou University),Zhengzhou 450001,China 2.Chushandian Reservoir Management Bureau,Henan Province,Xinyang 464000,China 3.Henan Map Institution,Henan Province,Zhengzhou 450003,China |
引用本文:
张成才,刘威,杨峰,彭凯,周雪丽. 基于编码对齐生成对抗网络的异源遥感影像地表覆被变化检测方法[J]. 遥感技术与应用, 2023, 38(5): 1107-1117.
Chengcai ZHANG,Wei LIU,Feng YANG,Kai PENG,Xueli ZHOU. Change Detection Method for Surface Cover of Heterogeneous Remote Sensing Image based on Code-Aligned Generative Adversarial Network. Remote Sensing Technology and Application, 2023, 38(5): 1107-1117.
链接本文:
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.5.1107
或
http://www.rsta.ac.cn/CN/Y2023/V38/I5/1107
|
1 |
ZHANG Liangpei, WU Chen.Advance and future development of change detection for multi-temporal remote sensing imagery[J].Acta Geodaetica et Cartographica Sinica,2017,46(10):1447-1459.
|
1 |
张良培,武辰.多时相遥感影像变化检测的现状与展望[J].测绘学报, 2017,46(10):1447-1459.
|
2 |
LI H, XIAO P, FENG X, et al. Using land long-term data records to map land cover changes in China over 1981-2010[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,PP(4):1-18. DOI: 10.1109/JSTARS.2016.2645203
doi: 10.1109/JSTARS.2016.2645203
|
3 |
ZELINSKI M E, HENDERSON J, SMITH M. Use of Landsat 5 for Change detection at 1998 indian and pakistani nuclear test sites[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2014, 7(8):3453-3460. DOI: 10.1109/JSTARS.2013.2294322
doi: 10.1109/JSTARS.2013.2294322
|
4 |
SHI W, ZHANG M, ZHANG R, et al. Change detection based on artificial intelligence: State-of-the-Art and challenges[J].Remote Sensing,2020,12(10):1688. DOI:10.3390/ rs12101688
doi: 10.3390/ rs12101688
|
5 |
STORVIK B, STORVIK G, FJORTOFT R.On the combination of multisensor data using meta-gaussian distributions[J]. IEEE Transactions on Geoscience & Remote Sensing,2009,47(7):2372-2379. DOI:10.1109/TGRS.2009. 2012699
doi: 10.1109/TGRS.2009. 2012699
|
6 |
ZHANG P, GONG M, SU L, et al. Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116:24-41. DOI: 10.1016/j.isprsjprs.2016.02.013
doi: 10.1016/j.isprsjprs.2016.02.013
|
7 |
TAO Z, GONG M, JIA L, et al. Iterative feature mapping network for detecting multiple changes in multi- source remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146:38-51. DOI: 10.1016/j.isprsjprs.2018.09.002
doi: 10.1016/j.isprsjprs.2018.09.002
|
8 |
YOU Y, CAO J, ZHOU W. A survey of change detection methods based on remote sensing images for multi-source and multi-objective scenarios[J]. Remote Sensing,2020,12(15):2460. DOI: 10.3390/rs12152460
doi: 10.3390/rs12152460
|
9 |
MERCIER G, MOSER G, SERPICO S B. Conditional copulas for change detection in heterogeneous remote sensing images[J]. IEEE Transactions on Geoence & Remote Sensing,2008,46(5):1428-1441. DOI:10.1109/TGRS. 2008. 916476
doi: 10.1109/TGRS. 2008. 916476
|
10 |
HUSSAIN M, CHEN D M, CHENG A, et al. Change detection from remotely sensed images: From pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80: 91-106. DOI: 10.1016/j.isprsjprs.2013.03.006
doi: 10.1016/j.isprsjprs.2013.03.006
|
11 |
BOVOLO F, BRUZZONE L. A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain[J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(1):218-36. DOI:10.1109/TGRS. 2006.885408
doi: 10.1109/TGRS. 2006.885408
|
12 |
CELIK T. Unsupervised change detection in satellite images using principal component analysis and k-Means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 772-6. DOI: 10.1109/LGRS.2009.2025059
doi: 10.1109/LGRS.2009.2025059
|
13 |
CANTY M J, NIELSEN A A. Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation [J]. Remote Sensing of Environment, 2008, 112(3): 1025-36. DOI: 10.1016/j.rse.2007.07.013
doi: 10.1016/j.rse.2007.07.013
|
14 |
BONTEMPS S, BOGAERT P, TITEUX N, et al. An object-based change detection method accounting for temporal dependences in time series with medium to coarse spatial resolution[J]. Remote Sensing of Environment, 2008, 112(6):3181-3191.DOI: 10.1016/j.rse.2008.03.013
doi: 10.1016/j.rse.2008.03.013
|
15 |
CHEN H, YOKOYA N, CHINI M. Fourier domain structural relationship analysis for unsupervised multimodal change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 198: 99-114.
|
16 |
GUO Qing, ZHU Liya, LI An, et al. Landslide identification method based on NDVI change detection[J]. Remote Sensing Technology and Application, 2022, 37(1): 17-23.
|
16 |
郭擎,朱丽娅,李安,等. 基于NDVI变化检测的滑坡遥感精细识别[J]. 遥感技术与应用, 2022, 37(1): 17-23.
|
17 |
SHELHAMER E, LONG J, DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651.DOI:10.1109/TPAMI.2016.2572683
doi: 10.1109/TPAMI.2016.2572683
|
18 |
DAUDT R C, LE SAUX B, BOULCH A, et al. Fully Convolutional Siamese Networks for change detection; Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), Athens, GREECE, F Oct 07-10, 2018 [C]∥ 2018. DOI: 10.1109/ICIP.2018.8451652
doi: 10.1109/ICIP.2018.8451652
|
19 |
SONG A, CHOI J. Fully convolutional networks with multiscale 3D filters and transfer learning for change detection in high spatial resolution satellite images[J]. Remote Sensing, 2020, 12(5): 799. DOI: 10.3390/rs12050799
doi: 10.3390/rs12050799
|
20 |
JIA L, GONG M, KAI Q, et al. A deep convolutional coupling network for change detection based on heterogeneous optical and radar images[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, PP(99):1-15. DOI: 10.1109/TNNLS.2016.2636227
doi: 10.1109/TNNLS.2016.2636227
|
21 |
GONG M, ZHAO J, LIU J, et al. Change detection in synthetic aperture radar images based on Deep Neural Networks[J]. IEEE Transactions on Neural Networks & Learning Systems,2017,27(1):125-138. DOI:10.1109/TNNLS. 2015. 2435783
doi: 10.1109/TNNLS. 2015. 2435783
|
22 |
NIU X, GONG M, TAO Z, et al. A Conditional Adversarial Network for change detection in heterogeneous images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, PP(1):1-5. DOI: 10.1109/LGRS.2018.2868704
doi: 10.1109/LGRS.2018.2868704
|
23 |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J] Science. 2006 Jul 28;313(5786):504-7. DOI: 10.1126/science.1127647
doi: 10.1126/science.1127647
|
24 |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using Cycle-Consistent Adversarial Networks[J]. IEEE International Conference on Computer Vision,2017,pp.2242-2251. DOI:10.48550/arXiv.1703.10593
doi: 10.48550/arXiv.1703.10593
|
25 |
KRHENBÜH L, PHILIPP, KOLTUN V. Efficient inference in fully connected CRFs with Gaussian Edge potentials[J]. Curran Associates Inc, 2012:109-117. DOI: 10.48550/arXiv.1210.5644
doi: 10.48550/arXiv.1210.5644
|
26 |
OTSU N. A Threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man & Cybernetics, 1979, 9(1):62-66.
|
27 |
LUPPINO L T, HANSEN M A, KAMPFFMEYER M, et al. Code-aligned autoencoders for unsupervised change detection in multimodal remote sensing images[J]. arXiv: Computer Vision and Pattern Recognition,2020. DOI: 10.1109/TNNLS.2022.3172183
doi: 10.1109/TNNLS.2022.3172183
|
28 |
MACK Y P, ROSENBLATT M. Multivariate k-nearest neighbor density estimates[J]. Journal of Multivariate Analysis, 1979, 9(1):1-15.
|
29 |
LUPPINO L T, KAMPFFMEYER M, BIANCHI F M, et al. Deep image translation with an affinity-based change prior for unsupervised multimodal change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021(99):1–22. DOI: 10.1109/TGRS.2021.3056196
doi: 10.1109/TGRS.2021.3056196
|
30 |
TOUATI R, MIGNOTTE M.An Energy-based model enco-ding nonlocal pairwise pixel interactions for multisensor chan-ge detection[J]. IEEE Transactions on Geoence & Remote Sensing,2017:1-13. DOI:10.1109/TGRS.2017. 2758359
doi: 10.1109/TGRS.2017. 2758359
|
31 |
TOUATI R, MIGNOTTE M, DAHMANE M. Multimodal change detection in remote sensing images using an unsupervised pixel pairwise-based Markov Random Field Model[J]. IEEE Transactions on Image Processing, 2019, PP(99): 757-767. DOI: 10.1109/TIP.2019.2933747
doi: 10.1109/TIP.2019.2933747
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|