Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (5): 1148-1158    DOI: 10.11873/j.issn.1004-0323.2023.5.1148
遥感应用     
星载NO2探测发展及对流层柱浓度产品精度分析
张新苑1,2,3(),李小英1(),程天海1,刘双慧1,2,4,郭宇航1,2,3
1.中国科学院空天信息创新研究院,北京 100094
2.中国科学院大学,北京 100049
3.中国科学院大学资源与环境学院,北京 100049
4.中国科学院大学电子电气与通信工程学院,北京 100049
Review of NO2 Retrieval of Satellite-borne Hyperspectral Sensors and Accuracy Assessment of Tropospheric NO2 Column Density Products
Xinyuan ZHANG1,2,3(),Xiaoying LI1(),Tianhai CHENG1,Shuanghui LIU1,2,4,Yuhang GUO1,2,3
1.Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
3.College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 100094,China
4.School of Electronic,Electrical and Communication Engineering,University of Chinese Academy of Sciences,Beijing 100094,China
 全文: PDF(816 KB)   HTML
摘要:

NO2作为大气中重要的痕量气体之一,是衡量大气污染状况的重要风向标。与传统地基观测相比,星载传感器能够提供大范围、长时间序列的观测资料,利用遥感卫星数据反演获取对流层NO2浓度已成为近些年研究的热点之一。首先介绍了国内外星载紫外高光谱传感器的发展。然后从原理方面对国际上通用的对流层NO2垂直柱浓度反演算法进行阐述。之后介绍了各官方对流层NO2柱浓度产品的反演流程及产品精度,并比较了各产品DOAS算法的区别。可见,由于传感器所获取数据的时间、空间、光谱分辨率越来越高,NO2柱浓度产品的反演模型及算法的选择更加合理,因此NO2产品精度也更高。

关键词: NO2星载高光谱传感器柱浓度反演算法    
Abstract:

As one of the important trace gases in the atmosphere, nitrogen dioxide (NO2) is an important weather vane to measure the state of air pollution and have been associated with human health. Compared with traditional ground-based observations, space-borne sensors can provide large-scale and long-term observational data, overcoming the limitations of the number and location of observation sites. This paper reviewed the development of the space-borne hyper-spectral sensors at home and abroad, the retrieval algorithms of tropospheric NO2 vertical column density, and also discussed the accuracy of the tropospheric NO2 products.With the development of technology, the resolution of the time, space and spectral are getting higher and the selection of the retrieval model and algorithm of the NO2 column density product are getting more reasonable,so the NO2 products are more accurate.

Key words: NO2    Satellite-borne ultraviolet hyperspectral sensor    Column density    Retrieval algorithm
收稿日期: 2022-07-06 出版日期: 2023-11-07
ZTFLH:  P407  
基金资助: 国家自然科学基金项目(41571345);国家重点研发项目(2018YFB050490303)
通讯作者: 李小英     E-mail: zhangxinyuan20@mails.ucas.edu.cn;Lixy01@radi.ac.cn
作者简介: 张新苑(1999—),女,陕西渭南人,硕士研究生,主要从事定量遥感应用研究。Email: zhangxinyuan20@mails.ucas.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张新苑
李小英
程天海
刘双慧
郭宇航

引用本文:

张新苑,李小英,程天海,刘双慧,郭宇航. 星载NO2探测发展及对流层柱浓度产品精度分析[J]. 遥感技术与应用, 2023, 38(5): 1148-1158.

Xinyuan ZHANG,Xiaoying LI,Tianhai CHENG,Shuanghui LIU,Yuhang GUO. Review of NO2 Retrieval of Satellite-borne Hyperspectral Sensors and Accuracy Assessment of Tropospheric NO2 Column Density Products. Remote Sensing Technology and Application, 2023, 38(5): 1148-1158.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.5.1148        http://www.rsta.ac.cn/CN/Y2023/V38/I5/1148

传感器/卫星发射时间光谱范围光谱分辨率空间分辨率
GOME/ ERS-21995年4月240~790 nm0.2~0.4 nm40 km2×320 km2
SCIAMACHY/ Envisat2002年3月240~2380 nm0.22~1.48 nm30 km2×60 km2
OMI/ Aura2004年7月270~500 nm0.63 nm13 km2×24 km2
GOME-2/Metop-A2006年10月

240~790 nm(主通道)

300~800 nm(偏振通道)

0.24~0.53 nm

80 km2×40 km2

(主通道)

TROPOMI/Sentinel-5p2017年10月

270~550 nm

675~775 nm

2 305~2 385 nm

0.2~0.4 nm

3.5 km2×7 km2(2019年8月6日前)

3.5 km2×5.5 km2(2019年8月6日后)

EMI/ Gaofen-52018年5月240~710 nm0.3~0.5 nm13 km2×48 km2
EMI-II/ Gaofen-5(02)2021年9月240~710 nm0.3~0.6 nm13 km2×24 km2
表1  星载紫外传感器主要参数
图1  DOAS算法原理示意图(a、b分别表示光谱和吸收截面分离过程)[6]
仪器产品版本波段范围/nm干扰痕量气体

伪吸

收体

拟合

方式

多项式次数

对流层NO2

品误差估计

GOMETM4NO2A v2.3426.3~451.3O3、H2Ovap、O2-O2、H2OliqRing线性335%~60%
QA4ECV NO2 v1.1425~465O3、H2Ovap、O2-O2、H2OliqRing线性4/
SCIAMACHYIFE/IUP Bremen 3.0425~450O4、H2OvapRing线性428%
TM4NO2A v2.3426.5~451.3O3、H2Ovap、O2-O2、H2OliqRing线性2-19%~9%
MPI Mainz/IUP Heidelberg425~450O3、O2-O2、H2OvapRing线性3/
QA4ECV NO2 v1.1425~465O3、H2Ovap、O2-O2、、H2OliqRing线性4/
OMIOMINO2 v4.0402~465O3、CHOCHO、H2Ovap、O2-O2、H2OliqRing非线性220%~30%
DOMINO v3.0405~465O3、H2Ovap、O2-O2、H2OliqRing非线性5-24%~4%
QA4ECV NO2 v1.1405~465

O3、H2Ovap、O2-O2

H2Oliq

Ring线性4-1~-4 Pmolec.cm-2
GOME-2IFE/IUP Bremen 4.2425~497O3、H2Ovap、O2-O2、H2OliqRing线性3<2×1014 molec?cm-2
TM4NO2A v2.3425~450O3、H2Ovap、O2-O2Ring线性3-13%~15%
O3MSAF lv2425~450O3、H2Ovap、O2-O2Ring线性330%
QA4ECV NO2 v1.1405~465O3、H2Ovap、O2-O2、H2OliqRing线性435%~45%
TROPOMI/405~465O3、H2Ovap、O2-O2、H2OliqRing非线性519%~33%
EMI/420~470O3、H2Ovap、O2-O2、H2OliqRing非线性5-30%
表2  对流层NO2浓度产品DOAS反演参数设置
1 ZHANG Xingying, ZHOU Minqiang, WANG Weihe, et al. Progress of global satellite remote sensing of atmospheric compositions and its'applications[J]. Science & Technology Review, 2015, 33(17): 13-22.
1 张兴赢, 周敏强, 王维和,等. 全球卫星大气成分遥感探测应用进展及其展望[J].科技导报,2015,33(17): 13-22.
2 SILLMAN S, LOGAN J A, WOFSY S C. The Sensitivity of ozone to nitrogen-oxides and hydrocarbons in regional ozone episodes[J]. Journal of Geophysical Research-Atmospheres,1990,95(D2):1837-1851. DOI:10.1029/JD095iD 02p01837
doi: 10.1029/JD095iD 02p01837
3 WAYNE R P. Chemistry of Atmospheres,2nd edition[M]. United States: N. p., 1993. Web.
4 SOLOMON S, PORTMANN R W, SANDERS R W, et al. On the role of nitrogen dioxide in the absorption of solar radiation[J]. Journal of Geophysical Research-Atmospheres, 1999,104(D10):12047-12058. DOI:10.1029/1999JD900035
doi: 10.1029/1999JD900035
5 KANG Y, CHOI H, IM J, et al. Estimation of surface-level NO2 and O3 concentrations using TROPOMI data and machine learning over East Asia[J]. Environmental Pollution, 2021, 288: 117711. DOI: 10.1016/j.envpol.2021.117711
doi: 10.1016/j.envpol.2021.117711
6 PLATT U, STUTZ J. Differential Optical Absorption Spectroscopy (DOAS)—Principles and Applications[M]. Berlin, German: Springer.2008.
7 VOLZ A, KLEY D. Evaluation of the Montsouris series of ozone measurements made in the nineteenth century[J]. Nature, 1988, 332(6161): 240-242. DOI: 10.1038/332240a0
doi: 10.1038/332240a0
8 ZHANG Xingying, ZHANG Peng, ZHANG Yan, et al. The trend, seasonal cycle, and sources of tropospheric NO2 over China during 1997~2006 based on satellite measurement[J]. Science in China Series D, 2007,37(10):1409-1416.
8 张兴赢, 张鹏, 张艳,等. 近10a中国对流层NO2的变化趋势、时空分布特征及其来源解析[J]. 中国科学(D辑:地球科学), 2007,37(10): 1409-1416.
9 ZHANG D Y, ZHOU Y Y, ZHENG L, et al. The spatial distribution characteristics and ground-level estimation of NO2 and SO2 over Huaihe River Basin and Shanghai based on satellite observations[C]∥ Remote Sensing and Modeling of Ecosystems for Sustainability XV. International Society for Optics and Photonics,p.107670L. DOI:10.1117/12.2318933
doi: 10.1117/12.2318933
10 RICHTER A, BURROWS J P, NUSS H, et al. Increase in tropospheric nitrogen dioxide over China observed from space[J]. Nature, 2005, 437(7055): 129-132. DOI: 10.1038/nature04092
doi: 10.1038/nature04092
11 VAN GEFFEN J, BOERSMA K F, VAN ROOZENDAEL M, et al. Improved spectral fitting of nitrogen dioxide from OMI in the 405-465 nm window[J]. Atmospheric Measurement Techniques, 2015, 8(4): 1685-1699. DOI: 10.5194/amt-8-1685-2015
doi: 10.5194/amt-8-1685-2015
12 GUYENNE T D, READINGS C. GOME: Global Ozone Monitoring Experiment. Interim Science Report[R]. 1993.
13 CHEN Liangfu, HAN Dong, TAO Jinhua, et al. Overview of tropospheric NO2 vertical column densityretrieval from space measurement[J]. Journal of Remote Sensing,2009, 13(3): 343-354.
13 陈良富,韩冬,陶金花,等. 对流层NO2柱浓度卫星遥感反演综述(英文)[J]. 遥感学报,2009,13(3):343-354.
14 BURROWS J P, WEBER M, BUCHWITZ M, et al. The Global Ozone Monitoring Experiment(GOME): Mission concept and first scientific results[J]. Journal of the Atmospheric Sciences, 1999, 56(2): 151-175. DOI: 10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2
doi: 10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2
15 BOVENSMANN H, BURROWS J P, BUCHWITZ M, et al. SCIAMACHY: Mission objectives and measurement modes[J]. Journal of the Atmospheric Sciences, 1999, 56(2): 127-150. DOI: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2
doi: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2
16 LAMSAL L N, MARTIN R V, PADMANABHAN A, et al. Application of satellite observations for timely updates to global anthropogenic NOx emission inventories[J]. Geophysical Research Letters, 2011, 38. DOI: 10.1029/2010GL046476
doi: 10.1029/2010GL046476
17 LEVELT P F, VAN DEN OORD G H J, DOBBER M R, et al. The ozone monitoring instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1093-1101. DOI: 10.1109/TGRS.2006.872333
doi: 10.1109/TGRS.2006.872333
18 BOERSMA K F, ESKES H J, VEEFKIND J P, et al. Near-real time retrieval of tropospheric NO2 from OMI[J]. Atmospheric Chemistry and Physics, 2007, 7(8): 2103-2118. DOI: 10.5194/acp-7-2103-2007
doi: 10.5194/acp-7-2103-2007
19 LAMSAL L N, KROTKOV N A, VASILKOV A, et al. Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide standard product version 4.0 with improved surface and cloud treatments[J]. Atmospheric Measurement Techniques, 2021, 14(1): 455-479. DOI: 10.5194/amt-14-455-2021
doi: 10.5194/amt-14-455-2021
20 LEVELT P F, HILSENRATH E, LEPPELMEIER G W, et al. Science objectives of the ozone monitoring instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(5):1199-1208. DOI:10.1109/TGRS.2006.872336
doi: 10.1109/TGRS.2006.872336
21 ACARRETA J R, DE HAAN J F, STAMMES P. Cloud pressure retrieval using the O-2-O-2 absorption band at 477 nm[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D5). DOI: 10.1029/2003JD003915
doi: 10.1029/2003JD003915
22 BURROWS J P, RICHTER A, DEHN A, et al. Atmospheric remote-sensing reference data from GOME - 2. Temperature-dependent absorption cross sections of O-3 in the 231-794 nm range[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 1999, 61(4): 509-517. DOI: 10.1016/S0022-4073(98)00037-5
doi: 10.1016/S0022-4073(98)00037-5
23 MUNRO R, LANG R, KLAES D, et al. The GOME-2 instrument on the Metop series of satellites: Instrument design, calibration, and level 1 data processing–An overview[J]. Atmospheric Measurement Techniques, 2016, 9(3): 1279-1301. DOI: 10.5194/amt-9-1279-2016
doi: 10.5194/amt-9-1279-2016
24 CALLIES J, CORPACCIOLI E, EISINGER M, et al. GOME-2 - Metop's second-generation sensor for operational ozone monitoring[J]. Esa Bulletin-European Space Agency, 2000(102): 28-36.
25 BABIC L, BRAAK R, DIERSSEN W, et al. Algorithm theoretical basis document for the TROPOMI L01b data processor[Z]. CI-6480-ATBD.July 2019.
26 GRIFFIN D, ZHAO X Y, MCLINDEN C A, et al. High-resolution mapping of nitrogen dioxide with TROPOMI: First results and validation over the Canadian oil sands[J]. Geophysical Research Letters, 2019, 46(2): 1049-1060. DOI: 10.1029/2018GL081095
doi: 10.1029/2018GL081095
27 BOERSMA K F, ESKES H J, DIRKSEN R J, et al. An improved tropospheric NO2 column retrieval algorithm for the ozone monitoring instrument[J]. Atmospheric Measurement Techniques, 2011, 4(9): 1905-1928. DOI: 10.5194/amt-4-1905-2011
doi: 10.5194/amt-4-1905-2011
28 BOERSMA K F, ESKES H J, RICHTER A, et al. Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project[J]. Atmospheric Measurement Techniques, 2018, 11(12): 6651-6678. DOI: 10.5194/amt-11-6651-2018
doi: 10.5194/amt-11-6651-2018
29 HERMAN J, CEDE A, SPINEI E, et al. NO2 column amounts from ground-based Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: Intercomparisons and application to OMI validation[J]. Journal of Geophysical Research-Atmospheres, 2009, 114(D13). DOI: 10.1029/2009JD011848
doi: 10.1029/2009JD011848
30 ZHANG C X, LIU C, WANG Y, et al. Preflight evaluation of the performance of the Chinese Environmental Trace Gas Monitoring Instrument (EMI) by spectral analyses of Nitrogen Dioxide[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3323-3332. DOI: 10.1109/TGRS.2018.2798038
doi: 10.1109/TGRS.2018.2798038
31 CHENG L X, TAO J H, VALKS P, et al. NO2 retrieval from the Environmental Trace Gases Monitoring Instrument (EMI): Preliminary results and intercomparison with OMI and TROPOMI[J]. Remote Sensing, 2019, 11(24). DOI: 10.3390/rs11243017
doi: 10.3390/rs11243017
32 ZHAO M J, SI F Q, ZHOU H J, et al. Preflight calibration of the Chinese Environmental Trace Gases Monitoring Instrument (EMI)[J]. Atmospheric Measurement Techniques, 2018, 11(9): 5403-5419. DOI: 10.5194/amt-11-5403-2018
doi: 10.5194/amt-11-5403-2018
33 ZHAO M J, SI F Q, ZHOU H J, et al. Pre-Launch radiometric characterization of EMI-2 on the GaoFen-5 series of satellites[J]. Remote Sensing,2021,13(14). DOI: 10.3390/rs13142843
doi: 10.3390/rs13142843
34 PLATT U, PERNER D, PATZ H W. Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical-absorption[J].Journal of Geophysical Research-Oceans,1979,84(NC10):6329-6335. DOI:10.1029/JC084iC10p06329
doi: 10.1029/JC084iC10p06329
35 QI Jin. Retrieval of nitrogen dioxide total column over China from SCIAMACHY/ENVISAT data[D]. Beijing: Chinese Academy Of Meteorological Sciences, 2007.齐瑾. 利用SCIAMACHY/ENVISAT资料开展中国区域NO2反演研究[D]. 北京: 中国气象科学研究院,2007.
36 YANG Dongshang. Research and application of NO2 retrieval algorithm for environmental trace gases monitoring instrument[D]. Beijing:University of Science and Technology of China,2021.
36 杨东上.星载大气痕量气体差分吸收光谱仪NO2反演算法研究及应用[D]. 北京:中国科学技术大学,2021.
37 VAN NOIJE T P C, ESKES H J, DENTENER F J, et al. Multi-model ensemble simulations of tropospheric NO2 compared with GOME retrievals for the year 2000[J]. Atmospheric Chemistry and Physics,2006,6:2943-2979. DOI:10.5194/acp-6-2943-2006
doi: 10.5194/acp-6-2943-2006
38 CHANCE K. Analysis of BrO measurements from the global ozone monitoring experiment[J]. Geophysical Research Letters, 1998, 25(17): 3335-3338. DOI:10.1029/98GL52359
doi: 10.1029/98GL52359
39 MARTIN R V, JACOB D J, CHANCE K, et al. Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns[J]. Journal of Geophysical Research-Atmospheres, 2003, 108(D17). DOI:10.1029/2003JD003453
doi: 10.1029/2003JD003453
40 ABAD G G, LIU X, CHANCE K, et al. Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval[J]. Atmospheric Measurement Techniques, 2015, 8(1): 19-32. DOI:10.5194/amt-8-19-2015
doi: 10.5194/amt-8-19-2015
41 RICHTER A, EYRING V, BURROWS J P, et al. Satellite measurements of NO2 from international shipping emissions[J]. Geophysical Research Letters, 2004, 31(23). DOI:10.1029/2004GL020822
doi: 10.1029/2004GL020822
42 BIRLE S, HORMANN C, JOCKEL P, et al. The STRatospheric Estimation Algorithm from Mainz (STREAM): Estimating stratospheric NO2 from nadir-viewing satellites by weighted convolution[J]. Atmospheric Measurement Techniques,2016,9(7):2753-2779. DOI:10.5194/amt-9-2753-2016
doi: 10.5194/amt-9-2753-2016
43 SIORIS C E, KUROSU T P, MARTIN R V, et al. Stratospheric and tropospheric NO2 observed by SCIAMACHY: first results[J]. Advances in Space Research, 2004, 34(4): 780-785. DOI:10.1016/j.asr.2003.08.066
doi: 10.1016/j.asr.2003.08.066
44 VAN GEFFEN J. H. G. M., ESKES H J, BOERSMA,et al. TROPOMI ATBD of the total and tropospheric NO2 data products[R]. DLR document, 2021.
45 BUCSELA E J, CELARIER E A, WENIG M O, et al. Algorithm for NO2 vertical column retrieval from the ozone monitoring instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1245-1258. DOI: 10.1109/TGRS.2005.863715
doi: 10.1109/TGRS.2005.863715
46 SCHAUB D, BOERSMA K F, KAISER J W, et al. Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements[J]. Atmospheric Chemistry and Physics, 2006, 6(11): 3211-3229. DOI: 10.5194/acp-6-3211-2006
doi: 10.5194/acp-6-3211-2006
47 MULLER J P, KHARBOUCHE S, NADINE GOBRON, et al. Recommendations (scientific) on best practices for retrievals for Land and Atmosphere ECVs.[Z].April 2016.
48 RICHTER A. Algorithm Description SCIAMACHY NO2 Tropospheric Columns[Z]. ChangedLast :March 2006.
49 HILBOLL A, RICHTER A, ROZANOV A, et al. Improvements to the retrieval of tropospheric NO2 from satellite - stratospheric correction using SCIAMACHY limb/nadir matching and comparison to Oslo CTM2 simulations[J]. Atmospheric Measurement Techniques, 2013, 6(3): 565-584. DOI:10.5194/amt-6-565-2013
doi: 10.5194/amt-6-565-2013
50 IRIE H, BOERSMA K F, KANAYA Y, et al. Quantitative bias estimates for tropospheric NO2 columns retrieved from SCIAMACHY, OMI, and GOME-2 using a common standard for East Asia[J]. Atmospheric Measurement Techniques, 2012, 5(10): 2403-2411. DOI:10.5194/amt-5-2403-2012
doi: 10.5194/amt-5-2403-2012
51 MARTIN R V, SIORIS C E, CHANCE K, et al. Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America[J]. Journal of Geophysical Research-Atmospheres, 2006, 111(D15). DOI:10.1029/2005JD006680
doi: 10.1029/2005JD006680
52 PETERS E, WITTROCK F, GROSSMANN K, et al. Formaldehyde and nitrogen dioxide over the remote western Pacific Ocean: SCIAMACHY and GOME-2 validation using ship-based MAX-DOAS observations[J]. Atmospheric Chemistry and Physics, 2012, 12(22): 11179-11197. DOI:10.5194/acp-12-11179-2012
doi: 10.5194/acp-12-11179-2012
53 BUCSELA E J, KROTKOV N A, CELARIER E A, et al. A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: Applications to OMI[J]. Atmospheric Measurement Techniques, 2013, 6(10): 2607-2626. DOI:10.5194/amt-6-2607-2013
doi: 10.5194/amt-6-2607-2013
54 HERRON-THORPE F L, LAMB B K, MOUNT G H, et al. Evaluation of a regional air quality forecast model for tropospheric NO2 columns using the OMI/Aura satellite tropospheric NO2 product[J]. Atmospheric Chemistry and Physics, 2010, 10(18): 8839-8854. DOI:10.5194/acp-10-8839-2010
doi: 10.5194/acp-10-8839-2010
55 MARCHENKO S, KROTKOV N A, LAMSAL L N, et al. Revising the slant column density retrieval of nitrogen dioxide observed by the Ozone Monitoring Instrument[J]. Journal of Geophysical Research-Atmospheres, 2015, 120(11): 5670-5692. DOI:10.1002/2014JD022913
doi: 10.1002/2014JD022913
56 KROTKOV N A, LAMSAL DSVM L N, SWARTZ W H. OMNO2 README Document Data Product Version 4.0[Z]. 2019.
57 COMPERNOLLE S, VERHOELST T, PINARDI G, et al. Validation of Aura-OMI QA4ECV NO2 climate data records with ground-based DOAS networks: the role of measurement and comparison uncertainties[J].Atmospheric Chemistry and Physics, 2020, 20(13): 8017-8045. DOI:10.5194/acp-20-8017-2020
doi: 10.5194/acp-20-8017-2020
58 PINARDI G, VAN ROOZENDAEL M, HENDRICK F,et al. Validation of tropospheric NO2 column measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations[J].Atmospheric Measurement Techniques,2020,13(11):6141-6174. DOI:10.5194/amt-13-6141-2020
doi: 10.5194/amt-13-6141-2020
59 RICHTER A, BEGOIN M, HILBOLL A, et al. An improved NO2 retrieval for the GOME-2 satellite instrument[J]. Atmospheric Measurement Techniques,2011,4(6): 1147-1159. DOI:10.5194/amt-4-1147-2011
doi: 10.5194/amt-4-1147-2011
60 HILBOLL A, RICHTER A. Gridded vertical tropospheric NO2 columns from GOME-2/MetOp-A[Z]. Dec 2014.
61 HASSINEN S, BALIS D, BAUER H, et al. Overview of the O3M SAF GOME-2 operational atmospheric composition and UV radiation data products and data availability[J]. Atmospheric Measurement Techniques, 2016, 9(2): 383-407. DOI:10.5194/amt-9-383-2016
doi: 10.5194/amt-9-383-2016
62 VALKS P, PINARDI G, RICHTER A, et al. Operational total and tropospheric NO2 column retrieval for GOME-2[J]. Atmospheric Measurement Techniques, 2011, 4(7): 1491-1514. DOI:10.5194/amt-4-1491-2011
doi: 10.5194/amt-4-1491-2011
63 VAN GEFFEN J, ESKES H, COMPERNOLLE S, et al. Sentinel-5P TROPOMI NO2 retrieval: Impact of version v2.2 improvements and comparisons with OMI and ground-based data[J]. Atmospheric Measurement Techniques, 2022, 15(7): 2037-2060. DOI:10.5194/amt-15-2037-2022
doi: 10.5194/amt-15-2037-2022
64 VERHOELST T, COMPERNOLLE S, PINARDI G, et al. Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks[J]. Atmospheric Measurement Techniques, 2021, 14(1): 481-510. DOI:10.5194/amt-14-481-2021
doi: 10.5194/amt-14-481-2021
65 ZHANG C X, LIU C, CHAN K L, et al. First observation of tropospheric nitrogen dioxide from the Environmental Trace Gases Monitoring Instrument onboard the GaoFen-5 satellite[J]. Light-Science & Applications, 2020, 9(1). DOI:10.1038/s41377-020-0306-z
doi: 10.1038/s41377-020-0306-z
[1] 刘双慧,李小英,曹西凤,张新苑. 大气甲烷探测进展与全球甲烷分布分析[J]. 遥感技术与应用, 2022, 37(2): 436-450.
[2] 彭书艳,赵龙,李婷婷,韩旭军,马明国,杨帅,杨跃程. 基于宇宙射线观测的喀斯特槽谷区典型流域土壤水分反演研究[J]. 遥感技术与应用, 2021, 36(5): 997-1008.
[3] 车轲,刘毅,蔡兆男,杨东旭,王海波,朱思虹. 便携式傅里叶变换红外光谱仪在大气温室气体观测中的应用进展[J]. 遥感技术与应用, 2021, 36(1): 44-54.
[4] 胡路,赵天杰,施建成,李尚楠,樊东,王平凯,耿德源,肖青,崔倩,陈德清. 基于地基微波辐射观测的土壤水分反演算法评估[J]. 遥感技术与应用, 2020, 35(1): 74-84.
[5] 康重阳,赵军,宋国富,包山虎. 基于OMI/OMPS中国季风区大气边界层SO2时空格局分析[J]. 遥感技术与应用, 2020, 35(1): 233-244.
[6] 劳从坤,杨娜,徐少博,汤燕杰,张恒杰. 反演策略对SMOS土壤水分反演算法的影响研究[J]. 遥感技术与应用, 2020, 35(1): 65-73.
[7] 宋小霞, 王静, 储小青. 基于多普勒频移的SAR海表流场反演[J]. 遥感技术与应用, 2019, 34(2): 293-302.
[8] 王恺宁, 王修信, 黄凤荣, 罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[9] 谢亚楠,周明亮,刘志坤. 合成孔径雷达反演降雨量算法的研究进展[J]. 遥感技术与应用, 2017, 32(4): 624-633.
[10] 王兆徽,季轩梁,廖菲,宋清涛. AMSR-E的C/X双波段垂直极化亮温反演海面盐度[J]. 遥感技术与应用, 2017, 32(2): 356-362.
[11] 马媛,李弘毅,张璞,刘大锋,黄晓东,郝晓华,邵东航,王建. 利用伽马射线探测雪水当量方法的改进[J]. 遥感技术与应用, 2017, 32(1): 57-63.
[12] 周春艳,厉青,张丽娟,马鹏飞,陈辉,王中挺. 遥感监测2005~2015年中国NO2时空特征及分析影响因素[J]. 遥感技术与应用, 2016, 31(6): 1190-1200.
[13] 吴琼,商建,仰美霖,杨虎. 基于非表面参考技术的机载双频降水反演结果分析[J]. 遥感技术与应用, 2014, 29(3): 378-385.
[14] 孙广轮,关道明,赵冬至,王新新,王祥. 星载微波遥感观测海表温度的研究进展[J]. 遥感技术与应用, 2013, 28(4): 721-730.
[15] 王新新,赵冬至,杨建洪,王 祥. 海表面盐度卫星微波遥感研究进展[J]. 遥感技术与应用, 2012, 27(5): 671-679.