1 |
ZHANG Xingying, ZHOU Minqiang, WANG Weihe, et al. Progress of global satellite remote sensing of atmospheric compositions and its'applications[J]. Science & Technology Review, 2015, 33(17): 13-22.
|
1 |
张兴赢, 周敏强, 王维和,等. 全球卫星大气成分遥感探测应用进展及其展望[J].科技导报,2015,33(17): 13-22.
|
2 |
SILLMAN S, LOGAN J A, WOFSY S C. The Sensitivity of ozone to nitrogen-oxides and hydrocarbons in regional ozone episodes[J]. Journal of Geophysical Research-Atmospheres,1990,95(D2):1837-1851. DOI:10.1029/JD095iD 02p01837
doi: 10.1029/JD095iD 02p01837
|
3 |
WAYNE R P. Chemistry of Atmospheres,2nd edition[M]. United States: N. p., 1993. Web.
|
4 |
SOLOMON S, PORTMANN R W, SANDERS R W, et al. On the role of nitrogen dioxide in the absorption of solar radiation[J]. Journal of Geophysical Research-Atmospheres, 1999,104(D10):12047-12058. DOI:10.1029/1999JD900035
doi: 10.1029/1999JD900035
|
5 |
KANG Y, CHOI H, IM J, et al. Estimation of surface-level NO2 and O3 concentrations using TROPOMI data and machine learning over East Asia[J]. Environmental Pollution, 2021, 288: 117711. DOI: 10.1016/j.envpol.2021.117711
doi: 10.1016/j.envpol.2021.117711
|
6 |
PLATT U, STUTZ J. Differential Optical Absorption Spectroscopy (DOAS)—Principles and Applications[M]. Berlin, German: Springer.2008.
|
7 |
VOLZ A, KLEY D. Evaluation of the Montsouris series of ozone measurements made in the nineteenth century[J]. Nature, 1988, 332(6161): 240-242. DOI: 10.1038/332240a0
doi: 10.1038/332240a0
|
8 |
ZHANG Xingying, ZHANG Peng, ZHANG Yan, et al. The trend, seasonal cycle, and sources of tropospheric NO2 over China during 1997~2006 based on satellite measurement[J]. Science in China Series D, 2007,37(10):1409-1416.
|
8 |
张兴赢, 张鹏, 张艳,等. 近10a中国对流层NO2的变化趋势、时空分布特征及其来源解析[J]. 中国科学(D辑:地球科学), 2007,37(10): 1409-1416.
|
9 |
ZHANG D Y, ZHOU Y Y, ZHENG L, et al. The spatial distribution characteristics and ground-level estimation of NO2 and SO2 over Huaihe River Basin and Shanghai based on satellite observations[C]∥ Remote Sensing and Modeling of Ecosystems for Sustainability XV. International Society for Optics and Photonics,p.107670L. DOI:10.1117/12.2318933
doi: 10.1117/12.2318933
|
10 |
RICHTER A, BURROWS J P, NUSS H, et al. Increase in tropospheric nitrogen dioxide over China observed from space[J]. Nature, 2005, 437(7055): 129-132. DOI: 10.1038/nature04092
doi: 10.1038/nature04092
|
11 |
VAN GEFFEN J, BOERSMA K F, VAN ROOZENDAEL M, et al. Improved spectral fitting of nitrogen dioxide from OMI in the 405-465 nm window[J]. Atmospheric Measurement Techniques, 2015, 8(4): 1685-1699. DOI: 10.5194/amt-8-1685-2015
doi: 10.5194/amt-8-1685-2015
|
12 |
GUYENNE T D, READINGS C. GOME: Global Ozone Monitoring Experiment. Interim Science Report[R]. 1993.
|
13 |
CHEN Liangfu, HAN Dong, TAO Jinhua, et al. Overview of tropospheric NO2 vertical column densityretrieval from space measurement[J]. Journal of Remote Sensing,2009, 13(3): 343-354.
|
13 |
陈良富,韩冬,陶金花,等. 对流层NO2柱浓度卫星遥感反演综述(英文)[J]. 遥感学报,2009,13(3):343-354.
|
14 |
BURROWS J P, WEBER M, BUCHWITZ M, et al. The Global Ozone Monitoring Experiment(GOME): Mission concept and first scientific results[J]. Journal of the Atmospheric Sciences, 1999, 56(2): 151-175. DOI: 10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2
doi: 10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2
|
15 |
BOVENSMANN H, BURROWS J P, BUCHWITZ M, et al. SCIAMACHY: Mission objectives and measurement modes[J]. Journal of the Atmospheric Sciences, 1999, 56(2): 127-150. DOI: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2
doi: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2
|
16 |
LAMSAL L N, MARTIN R V, PADMANABHAN A, et al. Application of satellite observations for timely updates to global anthropogenic NOx emission inventories[J]. Geophysical Research Letters, 2011, 38. DOI: 10.1029/2010GL046476
doi: 10.1029/2010GL046476
|
17 |
LEVELT P F, VAN DEN OORD G H J, DOBBER M R, et al. The ozone monitoring instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1093-1101. DOI: 10.1109/TGRS.2006.872333
doi: 10.1109/TGRS.2006.872333
|
18 |
BOERSMA K F, ESKES H J, VEEFKIND J P, et al. Near-real time retrieval of tropospheric NO2 from OMI[J]. Atmospheric Chemistry and Physics, 2007, 7(8): 2103-2118. DOI: 10.5194/acp-7-2103-2007
doi: 10.5194/acp-7-2103-2007
|
19 |
LAMSAL L N, KROTKOV N A, VASILKOV A, et al. Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide standard product version 4.0 with improved surface and cloud treatments[J]. Atmospheric Measurement Techniques, 2021, 14(1): 455-479. DOI: 10.5194/amt-14-455-2021
doi: 10.5194/amt-14-455-2021
|
20 |
LEVELT P F, HILSENRATH E, LEPPELMEIER G W, et al. Science objectives of the ozone monitoring instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(5):1199-1208. DOI:10.1109/TGRS.2006.872336
doi: 10.1109/TGRS.2006.872336
|
21 |
ACARRETA J R, DE HAAN J F, STAMMES P. Cloud pressure retrieval using the O-2-O-2 absorption band at 477 nm[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D5). DOI: 10.1029/2003JD003915
doi: 10.1029/2003JD003915
|
22 |
BURROWS J P, RICHTER A, DEHN A, et al. Atmospheric remote-sensing reference data from GOME - 2. Temperature-dependent absorption cross sections of O-3 in the 231-794 nm range[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 1999, 61(4): 509-517. DOI: 10.1016/S0022-4073(98)00037-5
doi: 10.1016/S0022-4073(98)00037-5
|
23 |
MUNRO R, LANG R, KLAES D, et al. The GOME-2 instrument on the Metop series of satellites: Instrument design, calibration, and level 1 data processing–An overview[J]. Atmospheric Measurement Techniques, 2016, 9(3): 1279-1301. DOI: 10.5194/amt-9-1279-2016
doi: 10.5194/amt-9-1279-2016
|
24 |
CALLIES J, CORPACCIOLI E, EISINGER M, et al. GOME-2 - Metop's second-generation sensor for operational ozone monitoring[J]. Esa Bulletin-European Space Agency, 2000(102): 28-36.
|
25 |
BABIC L, BRAAK R, DIERSSEN W, et al. Algorithm theoretical basis document for the TROPOMI L01b data processor[Z]. CI-6480-ATBD.July 2019.
|
26 |
GRIFFIN D, ZHAO X Y, MCLINDEN C A, et al. High-resolution mapping of nitrogen dioxide with TROPOMI: First results and validation over the Canadian oil sands[J]. Geophysical Research Letters, 2019, 46(2): 1049-1060. DOI: 10.1029/2018GL081095
doi: 10.1029/2018GL081095
|
27 |
BOERSMA K F, ESKES H J, DIRKSEN R J, et al. An improved tropospheric NO2 column retrieval algorithm for the ozone monitoring instrument[J]. Atmospheric Measurement Techniques, 2011, 4(9): 1905-1928. DOI: 10.5194/amt-4-1905-2011
doi: 10.5194/amt-4-1905-2011
|
28 |
BOERSMA K F, ESKES H J, RICHTER A, et al. Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project[J]. Atmospheric Measurement Techniques, 2018, 11(12): 6651-6678. DOI: 10.5194/amt-11-6651-2018
doi: 10.5194/amt-11-6651-2018
|
29 |
HERMAN J, CEDE A, SPINEI E, et al. NO2 column amounts from ground-based Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: Intercomparisons and application to OMI validation[J]. Journal of Geophysical Research-Atmospheres, 2009, 114(D13). DOI: 10.1029/2009JD011848
doi: 10.1029/2009JD011848
|
30 |
ZHANG C X, LIU C, WANG Y, et al. Preflight evaluation of the performance of the Chinese Environmental Trace Gas Monitoring Instrument (EMI) by spectral analyses of Nitrogen Dioxide[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3323-3332. DOI: 10.1109/TGRS.2018.2798038
doi: 10.1109/TGRS.2018.2798038
|
31 |
CHENG L X, TAO J H, VALKS P, et al. NO2 retrieval from the Environmental Trace Gases Monitoring Instrument (EMI): Preliminary results and intercomparison with OMI and TROPOMI[J]. Remote Sensing, 2019, 11(24). DOI: 10.3390/rs11243017
doi: 10.3390/rs11243017
|
32 |
ZHAO M J, SI F Q, ZHOU H J, et al. Preflight calibration of the Chinese Environmental Trace Gases Monitoring Instrument (EMI)[J]. Atmospheric Measurement Techniques, 2018, 11(9): 5403-5419. DOI: 10.5194/amt-11-5403-2018
doi: 10.5194/amt-11-5403-2018
|
33 |
ZHAO M J, SI F Q, ZHOU H J, et al. Pre-Launch radiometric characterization of EMI-2 on the GaoFen-5 series of satellites[J]. Remote Sensing,2021,13(14). DOI: 10.3390/rs13142843
doi: 10.3390/rs13142843
|
34 |
PLATT U, PERNER D, PATZ H W. Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical-absorption[J].Journal of Geophysical Research-Oceans,1979,84(NC10):6329-6335. DOI:10.1029/JC084iC10p06329
doi: 10.1029/JC084iC10p06329
|
35 |
QI Jin. Retrieval of nitrogen dioxide total column over China from SCIAMACHY/ENVISAT data[D]. Beijing: Chinese Academy Of Meteorological Sciences, 2007.齐瑾. 利用SCIAMACHY/ENVISAT资料开展中国区域NO2反演研究[D]. 北京: 中国气象科学研究院,2007.
|
36 |
YANG Dongshang. Research and application of NO2 retrieval algorithm for environmental trace gases monitoring instrument[D]. Beijing:University of Science and Technology of China,2021.
|
36 |
杨东上.星载大气痕量气体差分吸收光谱仪NO2反演算法研究及应用[D]. 北京:中国科学技术大学,2021.
|
37 |
VAN NOIJE T P C, ESKES H J, DENTENER F J, et al. Multi-model ensemble simulations of tropospheric NO2 compared with GOME retrievals for the year 2000[J]. Atmospheric Chemistry and Physics,2006,6:2943-2979. DOI:10.5194/acp-6-2943-2006
doi: 10.5194/acp-6-2943-2006
|
38 |
CHANCE K. Analysis of BrO measurements from the global ozone monitoring experiment[J]. Geophysical Research Letters, 1998, 25(17): 3335-3338. DOI:10.1029/98GL52359
doi: 10.1029/98GL52359
|
39 |
MARTIN R V, JACOB D J, CHANCE K, et al. Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns[J]. Journal of Geophysical Research-Atmospheres, 2003, 108(D17). DOI:10.1029/2003JD003453
doi: 10.1029/2003JD003453
|
40 |
ABAD G G, LIU X, CHANCE K, et al. Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval[J]. Atmospheric Measurement Techniques, 2015, 8(1): 19-32. DOI:10.5194/amt-8-19-2015
doi: 10.5194/amt-8-19-2015
|
41 |
RICHTER A, EYRING V, BURROWS J P, et al. Satellite measurements of NO2 from international shipping emissions[J]. Geophysical Research Letters, 2004, 31(23). DOI:10.1029/2004GL020822
doi: 10.1029/2004GL020822
|
42 |
BIRLE S, HORMANN C, JOCKEL P, et al. The STRatospheric Estimation Algorithm from Mainz (STREAM): Estimating stratospheric NO2 from nadir-viewing satellites by weighted convolution[J]. Atmospheric Measurement Techniques,2016,9(7):2753-2779. DOI:10.5194/amt-9-2753-2016
doi: 10.5194/amt-9-2753-2016
|
43 |
SIORIS C E, KUROSU T P, MARTIN R V, et al. Stratospheric and tropospheric NO2 observed by SCIAMACHY: first results[J]. Advances in Space Research, 2004, 34(4): 780-785. DOI:10.1016/j.asr.2003.08.066
doi: 10.1016/j.asr.2003.08.066
|
44 |
VAN GEFFEN J. H. G. M., ESKES H J, BOERSMA,et al. TROPOMI ATBD of the total and tropospheric NO2 data products[R]. DLR document, 2021.
|
45 |
BUCSELA E J, CELARIER E A, WENIG M O, et al. Algorithm for NO2 vertical column retrieval from the ozone monitoring instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1245-1258. DOI: 10.1109/TGRS.2005.863715
doi: 10.1109/TGRS.2005.863715
|
46 |
SCHAUB D, BOERSMA K F, KAISER J W, et al. Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements[J]. Atmospheric Chemistry and Physics, 2006, 6(11): 3211-3229. DOI: 10.5194/acp-6-3211-2006
doi: 10.5194/acp-6-3211-2006
|
47 |
MULLER J P, KHARBOUCHE S, NADINE GOBRON, et al. Recommendations (scientific) on best practices for retrievals for Land and Atmosphere ECVs.[Z].April 2016.
|
48 |
RICHTER A. Algorithm Description SCIAMACHY NO2 Tropospheric Columns[Z]. ChangedLast :March 2006.
|
49 |
HILBOLL A, RICHTER A, ROZANOV A, et al. Improvements to the retrieval of tropospheric NO2 from satellite - stratospheric correction using SCIAMACHY limb/nadir matching and comparison to Oslo CTM2 simulations[J]. Atmospheric Measurement Techniques, 2013, 6(3): 565-584. DOI:10.5194/amt-6-565-2013
doi: 10.5194/amt-6-565-2013
|
50 |
IRIE H, BOERSMA K F, KANAYA Y, et al. Quantitative bias estimates for tropospheric NO2 columns retrieved from SCIAMACHY, OMI, and GOME-2 using a common standard for East Asia[J]. Atmospheric Measurement Techniques, 2012, 5(10): 2403-2411. DOI:10.5194/amt-5-2403-2012
doi: 10.5194/amt-5-2403-2012
|
51 |
MARTIN R V, SIORIS C E, CHANCE K, et al. Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America[J]. Journal of Geophysical Research-Atmospheres, 2006, 111(D15). DOI:10.1029/2005JD006680
doi: 10.1029/2005JD006680
|
52 |
PETERS E, WITTROCK F, GROSSMANN K, et al. Formaldehyde and nitrogen dioxide over the remote western Pacific Ocean: SCIAMACHY and GOME-2 validation using ship-based MAX-DOAS observations[J]. Atmospheric Chemistry and Physics, 2012, 12(22): 11179-11197. DOI:10.5194/acp-12-11179-2012
doi: 10.5194/acp-12-11179-2012
|
53 |
BUCSELA E J, KROTKOV N A, CELARIER E A, et al. A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: Applications to OMI[J]. Atmospheric Measurement Techniques, 2013, 6(10): 2607-2626. DOI:10.5194/amt-6-2607-2013
doi: 10.5194/amt-6-2607-2013
|
54 |
HERRON-THORPE F L, LAMB B K, MOUNT G H, et al. Evaluation of a regional air quality forecast model for tropospheric NO2 columns using the OMI/Aura satellite tropospheric NO2 product[J]. Atmospheric Chemistry and Physics, 2010, 10(18): 8839-8854. DOI:10.5194/acp-10-8839-2010
doi: 10.5194/acp-10-8839-2010
|
55 |
MARCHENKO S, KROTKOV N A, LAMSAL L N, et al. Revising the slant column density retrieval of nitrogen dioxide observed by the Ozone Monitoring Instrument[J]. Journal of Geophysical Research-Atmospheres, 2015, 120(11): 5670-5692. DOI:10.1002/2014JD022913
doi: 10.1002/2014JD022913
|
56 |
KROTKOV N A, LAMSAL DSVM L N, SWARTZ W H. OMNO2 README Document Data Product Version 4.0[Z]. 2019.
|
57 |
COMPERNOLLE S, VERHOELST T, PINARDI G, et al. Validation of Aura-OMI QA4ECV NO2 climate data records with ground-based DOAS networks: the role of measurement and comparison uncertainties[J].Atmospheric Chemistry and Physics, 2020, 20(13): 8017-8045. DOI:10.5194/acp-20-8017-2020
doi: 10.5194/acp-20-8017-2020
|
58 |
PINARDI G, VAN ROOZENDAEL M, HENDRICK F,et al. Validation of tropospheric NO2 column measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations[J].Atmospheric Measurement Techniques,2020,13(11):6141-6174. DOI:10.5194/amt-13-6141-2020
doi: 10.5194/amt-13-6141-2020
|
59 |
RICHTER A, BEGOIN M, HILBOLL A, et al. An improved NO2 retrieval for the GOME-2 satellite instrument[J]. Atmospheric Measurement Techniques,2011,4(6): 1147-1159. DOI:10.5194/amt-4-1147-2011
doi: 10.5194/amt-4-1147-2011
|
60 |
HILBOLL A, RICHTER A. Gridded vertical tropospheric NO2 columns from GOME-2/MetOp-A[Z]. Dec 2014.
|
61 |
HASSINEN S, BALIS D, BAUER H, et al. Overview of the O3M SAF GOME-2 operational atmospheric composition and UV radiation data products and data availability[J]. Atmospheric Measurement Techniques, 2016, 9(2): 383-407. DOI:10.5194/amt-9-383-2016
doi: 10.5194/amt-9-383-2016
|
62 |
VALKS P, PINARDI G, RICHTER A, et al. Operational total and tropospheric NO2 column retrieval for GOME-2[J]. Atmospheric Measurement Techniques, 2011, 4(7): 1491-1514. DOI:10.5194/amt-4-1491-2011
doi: 10.5194/amt-4-1491-2011
|
63 |
VAN GEFFEN J, ESKES H, COMPERNOLLE S, et al. Sentinel-5P TROPOMI NO2 retrieval: Impact of version v2.2 improvements and comparisons with OMI and ground-based data[J]. Atmospheric Measurement Techniques, 2022, 15(7): 2037-2060. DOI:10.5194/amt-15-2037-2022
doi: 10.5194/amt-15-2037-2022
|
64 |
VERHOELST T, COMPERNOLLE S, PINARDI G, et al. Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks[J]. Atmospheric Measurement Techniques, 2021, 14(1): 481-510. DOI:10.5194/amt-14-481-2021
doi: 10.5194/amt-14-481-2021
|
65 |
ZHANG C X, LIU C, CHAN K L, et al. First observation of tropospheric nitrogen dioxide from the Environmental Trace Gases Monitoring Instrument onboard the GaoFen-5 satellite[J]. Light-Science & Applications, 2020, 9(1). DOI:10.1038/s41377-020-0306-z
doi: 10.1038/s41377-020-0306-z
|