Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (5): 1159-1166    DOI: 10.11873/j.issn.1004-0323.2023.5.1159
遥感应用     
基于资源一号02D高光谱卫星影像的青海湖悬浮物浓度反演研究
张志军1,4,5(),王茹2,3,6,姚月2,3,都成妍1,4,5,申茜2,3()
1.青海省生态环境监测中心,青海 西宁 810000
2.可持续发展大数据国际研究中心,北京 100094
3.中国科学院空天信息创新研究院 数字地球重点实验室,北京 100094
4.国家环境保护青藏高原生态环境监测与评估重点实验室,青海 西宁 810000
5.青海省生态环境监测与评估重点实验室,青海 西宁 810000
6.江苏省环境监测中心,江苏 南京 210019
Retrieval Sudy of Total Suspended Matter Concentration in Qinghai Lake based on ZY1 02D Hyperspectral Satellite Images
Zhijun ZHANG1,4,5(),Ru WANG2,3,6,Yue YAO2,3,Chengyan DU1,4,5,Qian SHEN2,3()
1.Qinghai Eco-Environmental Monitoring Center,Xi'ning 810000,China
2.International Research Center of Big Data for Sustainable Development Goals,Beijing,100094,China
3.Aerospace Information Research Institute,Chinese Academy of Sciences,Key Laboratory of Digital Earth Science,Beijing,100094,China
4.State Environmental Protection Key Laboratory of Tibetan Plateau Eco-Environmental Monitoring and Assessment,Xi'ning 810000,China
5.Qinghai Key Laboratory of Eco-Environmental Monitoring and Assessment,Xi'ning 810000,China
6.Jiangsu Environmental Monitoring Center,Nanjing,210019,China
 全文: PDF(2874 KB)   HTML
摘要:

水体悬浮物浓度是描述水体光学特性的一个重要参数。卫星遥感具有大范围、快速、高频次动态监测的优势,有助于加强对青海湖水环境质量的监测,降低监测成本。而资源一号02D(ZY1-02D)卫星高光谱影像作为新的数据源,具有高空间分辨率、高光谱分辨率的优点,为湖泊的水质高精度监测提供了可能性。为了验证ZY1-02D高光谱相机在水质遥感监测应用中的适用性,以ZY1-02D高光谱影像为遥感数据源,同时辅助实测数据,构建青海湖悬浮物浓度反演模型,并进行精度验证,评价模型的准确性,最后将模型应用于青海湖悬浮物浓度反演。研究结果表明:青海湖悬浮浓度反演模型平均相对误差为21.1%,均方根误差为0.296 mg/L,精度较好,青海湖悬浮物浓度反演结果呈现湖心低岸边高的特征,与同期Sentinl-2和同期Landsat 8数据反演结果进行对比,反演结果保持一致,说明ZY1-02D高光谱影像能够作为悬浮物浓度遥感反演的数据源之一。

关键词: ZY1?02D高光谱影像悬浮物浓度水质遥感    
Abstract:

The concentration of suspended matter in water body is an important parameter to describe the optical characteristics of water body. Satellite remote sensing has the advantages of a large range, fast and high-frequency word dynamic monitoring, which helps to strengthen the monitoring of water environment quality of Qinghai Lake and reduce the monitoring cost. And ZY1-02D satellite hyperspectral camera with high spatial resolution and high spectral resolution provides the possibility of high-precision monitoring of water quality in Qinghai Lake. In order to verify the applicability of the ZY1-02D hyperspectral camera in the application of remote sensing monitoring of water quality, this paper uses the ZY1-02D hyperspectral camera as the remote sensing data source, and also assists the actual measurement data to construct an inversion model of the suspended matter concentration in Qinghai Lake, and conducts accuracy verification to evaluate the accuracy of the inversion results. The results show that the average relative error of the Qinghai Lake suspended concentration inversion model is 21.1%, and the root mean square error is 0.296 mg/L. The accuracy is good, and the inversion results of Qinghai Lake suspended concentration show the characteristics of low in the center of the lake and high on the shore, compared with the retrieval results of Sentinel-2 and Landsat-8 in the same period, the retrieval results of Sentinel-2 and Landsat-8 in the same period, the inversion results remain consistent, results remain consistent, which indicates that the ZY1-02D hyperspectral image can retrieve the water quality parameters.

Key words: ZY1-02D    Hyperspectral imagery    Suspended matter concentration    Water quality remote sensing
收稿日期: 2022-05-18 出版日期: 2023-11-07
ZTFLH:  X832  
基金资助: 国家重点研发计划项目(2021YFB3901101)
通讯作者: 申茜     E-mail: 329981049@qq.com;shenqian@aircas.ac.cn
作者简介: 张志军(1987-),男,青海湟中人,高级工程师,主要从事生态环境监测与评估方面的研究。329981049@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张志军
王茹
姚月
都成妍
申茜

引用本文:

张志军,王茹,姚月,都成妍,申茜. 基于资源一号02D高光谱卫星影像的青海湖悬浮物浓度反演研究[J]. 遥感技术与应用, 2023, 38(5): 1159-1166.

Zhijun ZHANG,Ru WANG,Yue YAO,Chengyan DU,Qian SHEN. Retrieval Sudy of Total Suspended Matter Concentration in Qinghai Lake based on ZY1 02D Hyperspectral Satellite Images. Remote Sensing Technology and Application, 2023, 38(5): 1159-1166.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.5.1159        http://www.rsta.ac.cn/CN/Y2023/V38/I5/1159

图1  2021年7月份青海湖实测点位分布图
图2  2021年7月青海湖水面光谱数据
相机波段波长范围/nm空间分辨率/m
可见光/近红外相机B01452~9022.5
B02452~52110
B03522~607
B04635~694
B05776~895
B06416~452
B07591~633
B08708~752
B09871~1 047
高光谱相机/400~2 50030
表1  资源一号02D卫星影像参数
图3  6幅影像的镶嵌图
图4  实测遥感反射率与ZY1-02D影像上遥感反射率对比
图5  基于实测数据的悬浮物浓度反演模型构建
图6  基于ZY1-02D青海湖悬浮物反演模型精度评价
图7  2021年ZY1-02D青海湖悬浮物浓度反演分布图
图8  不同数据源悬浮物浓度反演结果对比
图9  青海湖悬浮物浓度反演分布图
1 LI Xiaoyan, LI Fengxia, MA Yu jun, et al. Wetland restoration and biodiversity conservation in the Qinghai Lake Basin[M]. Beijing:Science Press, 2016.李小雁, 李凤霞, 马育军, 等. 青海湖流域湿地修复与生物多样性保护[M]. 北京:科学出版社, 2016.
2 CAI Jinglong, LI Xuejun. Influence of tourism resources development around Qinghai Lake on wild animals and ecological environment[J]. Science and Technology of Qinghai Agriculture and Forestry, 200301):36-37.蔡景龙,李学军.环青海湖旅游资源开发对野生动物和生态环境的影响[J].青海农林科技, 2003(1:36-37.
3 LU Xuemei, SU Hua. Retrieving total suspended matter concentration in Fujian coastal waters using OLCI data[J]. Acta Scientiae Circumstantiae, 2020,40(8):2819-2827.
3 卢雪梅, 苏华.基于OLCI数据的福建近海悬浮物浓度遥感反演[J]. 环境科学学报, 2020,40(8):2819-2827.
4 XIN Xiaoda, SHEN Qian, LI Junsheng, et al. Inversion ofsuspended matter comcemtration of river of Manwan Dam Regions based on HJ-CCD data[J].Reomote Sensing Technology and Application,2016,31(4):682-690.
4 邢晓达,申茜,李俊生, 等.基于HJ-CCD的漫湾坝区河流悬浮物浓度遥感反演[J].遥感技术与应用,2016,31(4):682-690.
5 LI Yuan, LI Yunmei, SHI Kun, et al. Evaluation of toal suspended matter based on spectral classification[J]. Spectroscopy and Spectral Analysis,2013,33(10):2721-2726.
5 李渊,李云梅,施坤, 等.基于光谱分类的总悬浮物浓度估算[J].光谱学与光谱分析,2013,33(10):2721-2726.
6 PANG Shuna, ZHU Weining, CHEN Jiang, et al. Using Landsat 8 to remotely estimate and observe spatio-temporal variations of total suspended matter in Zhoushan coastal regions[J]. Spectroscopy and Spectral Analysis,2019,39(12):3826-3832.
6 逄淑娜,朱渭宁,陈江, 等.Landsat 8的舟山近岸海域总悬浮物遥感反演与时空变异研究[J].光谱学与光谱分析,2019,39(12):3826-3832.
7 CAI Qiming, YANG Ping. Effects of suspended particles in TaiHu Lake on albedo and absorption[J]. Oceanologia et Limnologia Sinica,1991(5):458-466.
7 蔡启铭,杨平.太湖悬浮质对湖面反照率及水体光吸收的影响[J].海洋与湖沼,1991(5):458-466.
8 KRITIKOS H, YORINKS L, SMITH H. Suspended solids analysis using ERTS-A data[J]. Remote Sensing of Environment, 1974, 3(1):69-78. DOI:10.1016/0034-4257(74)90039-X
doi: 10.1016/0034-4257(74)90039-X
9 HU C, CHEN Z, CLAYTON T D, et al. Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL[J]. Remote Sensing of Environment,2004,93(3):423-441.DOI:10.1016/j.rse.2004.08.007
doi: 10.1016/j.rse.2004.08.007
10 JIN Haixia, PAN Jian. Urban black-odor water body remote sensing monitoring based on GF-2 satellite data fusion [J]. Scientific and Technological Management of Land and Resources,2017,34(4):107-117.
10 靳海霞, 潘健. 基于高分二号卫星融合数据的城镇黑臭水体遥感监测研究[J]. 国土资源科技管理,2017,34(4):107-117.]
11 LI J S, SHEN Q, ZHANG B,et al. Retrieving total suspended matter in Lake Taihu from HJ-CCD near-infrared band data[J].Aquatic Ecosystem Health &Management,2014,17(3):280-289. DOI:10.1080/14634988.2014.941776
doi: 10.1080/14634988.2014.941776
12 LIU Wangbing, YU Zhifeng, ZHOU Bin, et al. Assessment of suspended sediment concentration at the Hangzhou Bay using HJ CCD imagery[J]. National Remote Sensing Bulletin,2013,17(4):905-918.
12 刘王兵, 于之峰, 周斌, 等.杭州湾 CCD 影像悬浮泥沙遥感定量反演[J].遥感学报, 2013,17(4):905-918.
13 XIAO Yanfang, ZHAO Wenji, ZHU Lin. Quantitative retrieval model of suspended sediment concen tration in estuary based on HJ-1 CCD image[J]. Marine Sciences,2012,36(8):59-63.
13 肖艳芳,赵文吉,朱琳.近海水体悬浮物 HJ-1 号小卫星 CCD 定量反演研究[J].海洋科学,2012,36(8):59-63.
14 CHEN J, CUI T W, QIU Z F,et al. A three-band semi-analytical model for deriving total suspended sediment concentration from HJ-1A/CCD data in turbid coastal waters[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2014(93):1-13. DOI:10.1016/j.isprsjprs.2014.02.011
doi: 10.1016/j.isprsjprs.2014.02.011
15 ZHOU Yi, LIU Yao, TIAN Shufang. Water transparency retrieval based on hyperspectasl data of ZY-1-02D satellite[J].Spacecraft Engineering,2020,29(6):155-161.
15 周毅,刘瑶,田淑芳.资源一号02D卫星高光谱数据水体透明度反演研究[J].航天器工程,2020,29(6):155-161.
16 LIU Yao, LI Junsheng, XIAO Chenchao, et al. Inland water chlorophyll-a retrieval based on ZY-1 02D satellite hyperspectral observations[J]. National Remote Sensing Bulletin, 2022,26(1):168-178.
16 刘瑶, 李俊生, 肖晨超, 等. 资源一号02D高光谱影像内陆水体叶绿素a浓度反演[J].遥感学报,2022,26(1):168-178.
17 TANG Junwu, TIAN Guoliang, WANG Xiaoyong.The methods of water spectra measurement and analysis I: Above-water method[J].National Remote Sensing Bulletin,2004,8(1): 37–44.
17 唐军武, 田国良, 汪小勇 等.水体光谱测量与分析Ⅰ :水面以上测量法[J].遥感学报,2004,8(1): 37–44.
18 Mobley C D. Estimation of the remote-sensing reflectance from above-surface measurements[J]. Applied Optics, 1999, 38(36): 7442–7455. DOI:10.1364/AO.38.007442
doi: 10.1364/AO.38.007442
[1] 胡宜娜,安如,艾泽天,都伟冰. 基于无人机高光谱影像的三江源草种精细识别研究[J]. 遥感技术与应用, 2021, 36(4): 926-935.
[2] 段金亮,张瑞,李奎,庞家泰. 一种基于噪声水平估计的扩展线性光谱分解算法[J]. 遥感技术与应用, 2021, 36(4): 820-826.
[3] 谢旭, 陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[4] 肖昊,王杰. 基于IDL和MATLAB混合编程的两种光谱混合分析方法比较[J]. 遥感技术与应用, 2017, 32(5): 858-865.
[5] 李恒凯,欧彬,刘雨婷,邱玉宝. 基于混合像元分解的高光谱影像柑橘识别方法[J]. 遥感技术与应用, 2017, 32(4): 743-750.
[6] 鲍蕊,夏俊士,薛朝辉,杜培军,车美琴. 基于形态学属性剖面的高光谱影像集成分类[J]. 遥感技术与应用, 2016, 31(4): 731-738.
[7] 邢晓达,申茜,李俊生,张方方,庞治国,吕书强. 基于HJ-CCD的漫湾坝区河流悬浮物浓度遥感反演[J]. 遥感技术与应用, 2016, 31(4): 682-690.
[8] 林志垒,晏路明. 高光谱影像的BDT-SVM地物分类算法与应用[J]. 遥感技术与应用, 2016, 31(1): 177-185.
[9] 胡俊,谭琨,吴立新. 一种基于多项式逻辑回归高光谱影像分类方法的改进[J]. 遥感技术与应用, 2015, 30(1): 135-139.
[10] 李茜楠,苏红军. 基于萤火虫算法的高光谱遥感波段选择方法[J]. 遥感技术与应用, 2014, 29(5): 761-770.
[11] 苏俊英. 基于光谱曲线小波系数分维测度的高光谱影像高效分割方法[J]. 遥感技术与应用, 2012, 27(4): 555-559.
[12] 秦雁,邓孺孺,何颖清,陈启东,朱家敏,汪伟. 广东省大中型水库水质遥感监测系统的建立与应用[J]. 遥感技术与应用, 2011, 26(6): 855-862.
[13] 姜广甲, 刘殿伟, 宋开山, 徐京萍, 张柏, 王宗明. 基于半分析模型的石头口门水库总悬浮物浓度反演研究[J]. 遥感技术与应用, 2010, 25(1): 107-111.
[14] 苏俊英,舒宁. 一种基于非线性增益小波滤波的高光谱影像去噪技术研究[J]. 遥感技术与应用, 2008, 23(4): 434-439.
[15] 叶 琳, 徐涵秋. 闽江流域福州段悬浮物浓度的遥感分析[J]. 遥感技术与应用, 2006, 21(6): 497-501.