Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (5): 1167-1179    DOI: 10.11873/j.issn.1004-0323.2023.5.1167
遥感应用     
基于GEE的石羊河流域植被覆盖变化特征及其影响因素分析
方春爽1(),朱睿1(),卢睿1,陈泽霞1,王凌阁1,山建安1,尹振良2
1.兰州交通大学 测绘与地理信息学院/地理国情监测技术应用国家地方联合工程研究中心/ 甘肃省地理国情监测工程实验室,甘肃 兰州 730000
2.中国科学院西北生态环境资源研究院 国家冰川冻土沙漠科学数据中心,甘肃 兰州 730000
Analysis of Vegetation Cover Change Characteristics and Influencing Factors in the Shiyang River basin based on GEE
Chunshuang FANG1(),Rui ZHU1(),Rui LU1,Zexia CHEN1,Lingge WANG1,Jian’an SHAN1,Zhenliang YIN2
1.Faculty of Geomatics / National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring / Gansu Provincial Engineering Laboratory for National Geographic State Monitoring,Lanzhou Jiaotong University,Lanzhou 730000,China
2.National Cryosphere Desert Data Center,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
 全文: PDF(6901 KB)   HTML
摘要:

植被作为陆地生态系统的重要组成部分,常被用作评估气候变化和生态恢复成效的指标。以石羊河流域为研究对象,基于Google Earth Engine (GEE) 平台采用Theil-Sen趋势分析和Mann-Kendall检验(TS-MK)、Hurst指数揭示植被覆盖变化特征;采用偏相关分析、残差分析和地理探测器探究植被覆盖变化的影响因素。结果表明:2001~2020年间石羊河流域植被NDVI呈现波动增长趋势,增长率为0.023/10 a;呈显著增加趋势和显著减少趋势的面积占比分别为72.32%和2.40%。未来植被NDVI变化趋势保持一致(Hurst>0.5)的面积占比为63.84%,其中持续性显著增加的面积占比最大,为47.37%。偏相关分析结果表明降水对植被生长的影响较强,而温度、太阳辐射和饱和水汽压差的影响相对较弱。残差分析结果表明气候要素和人类活动影响下植被NDVI呈显著增加趋势的面积占比分别为21.59%和60.07%,石羊河流域的植被变化主要受人类活动的积极影响。此外,地理探测器的结果表明植被NDVI的空间分布主要受水热条件分布特征的影响。该研究结果有助于深化对植被覆盖变化影响因素的认识,为石羊河流域生态保护提供借鉴。

关键词: NDVI影响因素Google Earth Engine地理探测器石羊河流域    
Abstract:

As an important part of terrestrial ecosystems, vegetation is often used as an indicator to assess the effectiveness of climate change and ecological restoration. In this study, the Shiyang River Basin is taken as an example, Theil-Sen and Mann-Kendall models, and the Hurst index were used to analyze the change characteristics of vegetation cover. The correlation analysis, residual analysis and Geodetector were used to explore the influencing factors of vegetation cover change. The results showed that the vegetation NDVI demonstrated a fluctuating but upward trend from 2001 to 2020, with a rate of increase of 0.023/10 a. Areas with significant increased and significant decreased accounted for 72.32% and 2.4%, respectively. Areas with sustainability (Hurst>0.5) accounted for 63.84 % of the entire area, among which 47.37% showed continuously significant increasing trend. The correlation results between NDVI and climatic factors indicated that the impact of precipitation was particularly significant, and the impacts of temperature, solar radiation and saturated vapor pressure deficit were relatively weak. The area of NDVIpre showed a significant increase trend accounted for 21.59%, while the area of NDVIres showed a significant increase trend accounted for 60.07%, so interannual variation of NDVI in Shiyang River Basin was greatly affected by human activities. Geodetector results showed that the spatial distributation characteristics of water-heat conditions. It is noted that the spatial distribution of NDVI of cultivated land is greatly affected by population density. The results of this study are helpful to deepen the understanding of the driving factors of vegetation change and provide scientific reference for ecological protection and restoration of Shiyang River Basin.

Key words: NDVI    Influencing factors    Google Earth Engine    Geodetector    Shiyang River Basin
收稿日期: 2022-06-06 出版日期: 2023-11-07
ZTFLH:  Q948  
基金资助: 国家自然科学基金项目(42161018);中国科学院青年创新促进会项目(2021424);甘肃省重大科技计划项目(21ZD4NF044-02)
通讯作者: 朱睿     E-mail: 12211915@stu.lzjtu.edu.cn;zhur@mail.lzjtu.cn
作者简介: 方春爽(1997-),男,山东济宁人,硕士研究生,主要从事水土资源耦合研究。E?mail: 12211915@stu.lzjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
方春爽
朱睿
卢睿
陈泽霞
王凌阁
山建安
尹振良

引用本文:

方春爽,朱睿,卢睿,陈泽霞,王凌阁,山建安,尹振良. 基于GEE的石羊河流域植被覆盖变化特征及其影响因素分析[J]. 遥感技术与应用, 2023, 38(5): 1167-1179.

Chunshuang FANG,Rui ZHU,Rui LU,Zexia CHEN,Lingge WANG,Jian’an SHAN,Zhenliang YIN. Analysis of Vegetation Cover Change Characteristics and Influencing Factors in the Shiyang River basin based on GEE. Remote Sensing Technology and Application, 2023, 38(5): 1167-1179.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.5.1167        http://www.rsta.ac.cn/CN/Y2023/V38/I5/1167

图1  石羊河流域区域示意图审图号:GS(2020)4619
Sen趋势值与MK检验变化趋势类型Sen趋势值、MK检验和Hurst指数变化趋势的持续性
S > 0.000 1,|Z| > 1.96显著增加S > 0.000 1,|Z| > 1.96,H > 0.5持续性显著增加
S > 0.000 1,|Z| ≤ 1.96不显著增加S > 0.000 1,|Z| ≤ 1.96,H > 0.5持续性不显著增加
S ≤ 0.000 1或S ≥ -0.000 1无明显变化S ≤ 0.000 1或S ≥ -0.000 1,H > 0.5持续性无明显变化
S < -0.000 1,|Z| ≤ 1.96不显著减少S < -0.000 1,|Z| ≤ 1.96,H > 0.5持续极不显著减少
S < -0.000 1,|Z| > 1.96显著减少S < -0.000 1,|Z| > 1.96,H > 0.5持续性显著减少
H < 0.5未来变化趋势不确定
表1  变化趋势类型和变化趋势持续性的定义
图2  技术流程图
图3  2001~2020年石羊河流域NDVI的年际变化趋势及其空间分布特征
图4  植被NDVI的变化趋势及其不同土地覆被下的分布特征和植被NDVI变化趋势持续性及其在不同土地覆被下的分布特征
图5  石羊河流域NDVI与温度、降水、太阳辐射和饱和水汽压差的偏相关性空间分布
土地覆被类型温度降水太阳辐射饱和水汽压差
耕地16.6728.850.706.92
林地8.2343.460.0018.39
草地4.3951.330.506.03
裸地12.1931.270.232.67
表2  不同土地覆被类型NDVI与气候要素呈显著相关的面积占比(%)
图6  植被NDVI与气候要素复相关性的空间分布
图7  NDVI pre 和NDVI res 变化趋势特征及其在不同土地覆被下的分布特征
X1X2X3X4X5X6X7X8

石羊河

流域

0.520.290.010.490.480.300.470.10
耕地0.050.000.010.050.040.020.020.11
林地0.290.040.000.140.150.000.000.01
草地0.600.140.010.580.480.290.470.12
裸地0.610.370.010.510.580.210.540.11
表3  地理探测器探测器结果
1 ZHAO Jie, DU Ziqiang, WU Zhitao, et al. Seasonal variations of day- and nighttime warming and their effects on vegetation dynamics in China's temperate zone[J]. Acta Geographica Sinica, 2018, 73(3): 395-404.
1 赵杰,杜自强,武志涛,等.中国温带昼夜增温的季节性变化及其对植被动态的影响[J]. 地理学报, 2018, 73(3): 395-404.
2 GONG Z, ZHAO S, GU J. Correlation analysis between vegetation coverage and climate drought conditions in north china during 2001–2013[J]. Journal of Geographical Sciences, 2017, 27(2):143-160. DOI: 10.1007/s11442-017-1369-5
doi: 10.1007/s11442-017-1369-5
3 ZHANG Y, ZHANG C, WANG Z, et al. Vegetation dynamics and its driving forces from climate change and human activities in the three-river source region, China from 1982 to 2012[J]. Science of the Total Environment, 2016, 563: 210-220. DOI: 10.1016/j.scitotenv.2016.03.223
doi: 10.1016/j.scitotenv.2016.03.223
4 LI Xin, MA Hanqing, RAN Youhua, et al. Terrestrial carbon cycle model-data fusion: Progress and challenges[J]. Science China Earth Sciences, 2021, 64 (10): 1645–1657.
4 李新,马瀚青,冉有华,等.陆地碳循环模型—数据融合:前沿与挑战[J]. 中国科学:地球科学, 2021, 51(10): 1650-1663.
5 KARL T R, TRENBERTH K E. Modern global climate change[J]. Science, 2003, 302(5651): 1719-1723. DOI: 10.1126/science.1090228
doi: 10.1126/science.1090228
6 KONG D, MIAO C, WU J, et al. Time lag of vegetation growth on the Loess Plateau in response to climate factors: Estimation, distribution, and influence[J]. Science of The Total Environment, 2020, 744: 140726. DOI: 10.1016/j.scitotenv.2020.140726
doi: 10.1016/j.scitotenv.2020.140726
7 HAO Binfei, HAN Xujun, MA Mingguo, et al .Research progress on the application of Google Earth Engine in geoscience and environmental sciences[J]. Remote Sensing Technology and Application, 2018, 33(4): 600-611.
7 郝斌飞,韩旭军,马明国,等. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用, 2018,33(4): 600-611.
8 HAO F, ZHANG X, OUYANG W, et al. Vegetation NDVI linked to temperature and precipitation in the upper catchments of Yellow River[J].Environmental Modeling and Assessment, 2012,17(4):389-398. DOI: 10.1007/s10666-011-9297-8
doi: 10.1007/s10666-011-9297-8
9 ZHANG Xuexia, GE Quansheng, ZHENG Jingyun. Impacts and lags of global warming on vegetation in Beijing for the last 50 years based on remotely sensed data and phonological information[J]. Chinese Journal of Ecology,2005,24(2):123-130.
9 张学霞,葛全胜,郑景云.近50年北京植被对全球变暖的响应及其时效——基于遥感数据和物候资料的分析[J]. 生态学杂志, 2005, 24(2): 123-130.
10 SUN Hongyu, WANG Changyao, NIU Zheng, et al. Analysis of the vegetation cover Change and the relationship bgtween NDVI and environmental factors by using NOAA Time Series Data[J]. National Remote Sensing Bulletin, 1998,2(3):204-210.
10 孙红雨,王长耀,牛铮,等.中国地表植被覆盖变化及其与气候因子关系──基于NOAA时间序列数据分析[J]. 遥感学报, 1998, 2(3): 204-210.
11 SHI S, YU J, WANG F, et al. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau[J]. Science of the Total Environment, 2021, 755: 142419. DOI: 10.1016/j.scitotenv.2020.142419
doi: 10.1016/j.scitotenv.2020.142419
12 MYNENI R B, KEELING C D, TUCKER C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991[J]. Nature, 1997, 386(6626): 698–702. DOI: 10.1038/386698a0
doi: 10.1038/386698a0
13 DAI Shengpei, ZHANG Bo, WANG Qiang, et al. Variation in grassland vegetation ndvi and its ten-day response to temperature and precipitation in the Qilian Mountains[J]. Resources Science, 2010, 32(9): 1769-1776.
13 戴声佩,张勃,王强,等.祁连山草地植被NDVI变化及其对气温降水的旬响应特征[J]. 资源科学, 2010, 32(9): 1769-1776.
14 KONG Dongdong, ZHANG QIANG, HUANG Wenlin, et al. Vegetation phenology change in Tibetan Plateau from 1982 to 2013 and its related meteorological factors[J]. Acta Geographica Sinica, 2017, 72(1): 39-52.
14 孔冬冬,张强,黄文琳,等.1982-2013年青藏高原植被物候变化及气象因素影响[J]. 地理学报, 2017, 72(1): 39-52.
15 TIAN Zhihui, REN Zuguang, WEI Haitao, et al. Driving mechanism of the spatiotemporal evolution of vegetation in the Yellow River Basin from 2000 to 2020[J]. Environmental Science, 2022, 43(2): 743-751.
15 田智慧,任祖光,魏海涛.2000~2020年黄河流域植被时空演化驱动机制[J]. 环境科学, 2022, 43(2): 743-751.
16 CUI Haonan, LUO Honghai, ZHANG Xuezhen. Temporal and spatial characteristics of green vegetation cover changes in the Yangtze River Economic Belt from 1982 to 2019[J].Chinese Journal of Ecology, 2021, 40(8): 2517-2529.
16 崔浩楠,罗海江,张学珍.1982—2019年长江经济带植被覆盖变化的时空特征, 生态学杂, 2021, 40(8): 2517-2529.
17 WANG Jinfeng, XU Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.
17 王劲峰,徐成东.地理探测器:原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
18 PENG Wenfu, ZHANG Dongmei, LUO Yanmei, et al. Influence of natural factors on vegetation NDVI using geographical detection in Sichuan Province[J]. Acta Geographica Sinica, 2019, 74(9): 1758-1776.
18 彭文甫,张冬梅,罗艳玫,等.自然因子对四川植被NDVI变化的地理探测[J]. 地理学报, 2019, 74(9): 1758-1776.
19 XIAO Jianyong, WANG Shijie, BAI Xiaoyong, et al. Determinants and spatial-temporal evolution of vegetation coverage in the Karst critical zone of South China[J]. Acta Ecologica Sinica,2018,38(24):8799-8812.
19 肖建勇,王世杰,白晓永,等.喀斯特关键带植被时空变化及其驱动因素[J]. 生态学报, 2018, 38(24): 8799-8812.
20 LI Lili, WANG Dawei, HAN Tao. Spatial-temporal dynamics of vegetation coverage and responding to climate change in Shiyang River Basin during 2000—2015[J]. Journal of Desert Research, 2018, 38(5): 1108-1118.
20 李丽丽,王大为,韩涛.2000—2015年石羊河流域植被覆盖度及其对气候变化的响应[J]. 中国沙漠, 2018, 38(5): 1108-1118.
21 GUAN Wenqian. Spatiotemporal NDVI variations and driving factors in hexi corridor and its surrounding area[D]. Lanzhou: Lanzhou University, 2017.
21 关文茜.河西走廊及其周边地区NDVI的时空变化及其驱动因子研究[D]. 兰州: 兰州大学, 2017.
22 ZHANG Lifeng. On Vegetation cover change and its influencing factors in Typical Inland River Basins of Northwest ecological environment fragile regions[D]. Lanzhou: Lanzhou Jiaotong University, 2017
22 张立峰.西北生态环境脆弱区典型内陆河流域植被覆盖变化及其影响因素研究[D]. 兰州: 兰州交通大学, 2017.
23 NOEL G, MAT H, MIKE D, et al. Google earth engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202: 18-27.
24 ZHANG Tao, TANG Hong. Vegettation cover changed and urban expansion in Beijing-Tianjin-Hebei during 2001~2015 based on Google Earth Engine[J]. Remote Sensing Technology and Application, 2018, 33(4): 593-599.
24 张滔,唐宏.基于Google Earth Engine的京津冀2001~2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018, 33(4): 593-599.
25 HUANG Zhongliang, HE Jing, LIU Gang, et al. Research progress of remote sensing image analysis and application oriented to GEE platform[J]. Remote Sensing Technology and Application, 2022, 37(3):1-8.
25 黄仲良,何敬,刘刚,等.面向GEE平台的遥感影像分析与应用研究进展[J]. 遥感技术与应用, 2022, 37(3): 1-8.
26 ZHOU J, ZHAO Y, HUANG P, et al. Impacts of ecological restoration projects on the ecosystem carbon storage of inland river basin in arid area, China[J]. Ecological Indicators, 2020, 118: 106803. DOI: 10.1016/j.ecolind.2020.106803
doi: 10.1016/j.ecolind.2020.106803
27 GUO Zecheng, WEI Wei, PANG Sufei, et al. Spatio-Temporal evolution and motivation analysis of ecological vulnerability in Arid Inland River Basin based on SPCA and remote sensing index: A case study on the Shiyang River Basin[J].Acta Ecologica Sinica, 2019, 39(7): 2558-2572.
27 郭泽呈,魏伟,庞素菲,等.基于SPCA和遥感指数的干旱内陆河流域生态脆弱性时空演变及动因分析——以石羊河流域为例[J]. 生态学报, 2019, 39(7): 2558-2572.
28 WANG Ning, SU Xiaoling. Singular spectrum analysis of climate variables and runoff in the Shiyang river basin[J]. Journal of Arid Land Resources and Environment, 2013, 27(12): 180-185.
28 王宁,粟晓玲.石羊河流域水文气象要素变化的奇异谱分析[J]. 干旱区资源与环境, 2013, 27(12): 180-185.
29 LIU Shizeng. Changes of riparian vegetation and its driving factors at the middle and lower reaches of Shiyang River Basin[D]. Beijing: BeiJing Forestry University, 2010.
29 刘世增.石羊河流域中下游河岸植被变化及其驱动因素研究[D]. 北京: 北京林业大学, 2010.
30 QI Yong’an, LI Jijun, ZHANG Jianming, et al. Research on eco-functional regionalization in Shiyang River Basin[J]. Journal of Lanzhou University(Natural Sciences),2006,42(4): 29-33.
30 祁永安,李吉均,张建明,等.石羊河流域生态功能区研究[J]. 兰州大学学报(自然科学版),2006,42(4):29-33.
31 PENG S, DING Y, LIU W, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017 [J]. Earth System Science Data, 2019, 11(4): 1931-1946. DOI: 10.5194/essd-11-1931-2019
doi: 10.5194/essd-11-1931-2019
32 ABATZOGLOU J T, DOBROWSKI S Z, PARKS S A, et al. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015[J]. Science Data, 2018, 5: 170191. DOI: 10.1038/sdata.2017.191
doi: 10.1038/sdata.2017.191
33 TU You, JIANG Liangliang, LIU Rui, et al. Spatiotemporal changes of vegetation NDVI and its driving forces in China during 1982—2015[J]. 2021, 37(22): 75-84.涂又, 姜亮亮, 刘睿,等. 1982—2015年中国植被NDVI时空变化特征及其驱动分析. 农业工程学报, 2021, 37(22): 75-84.
34 YANG Yanping, CHEN Jianjun, QIN Qiaoting, et al. Temporal and spatial variation of vegetation and its response to topography, climate and land use in Guangxi during 2000-2018[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17): 234-241.
34 杨艳萍,陈建军,覃巧婷,等.2000-2018年广西植被时空变化及其对地形、气候和土地利用的响应[J]. 农业工程学报, 2021, 37(17): 234-241.
35 EVANS J, ROLAND G. Discrimination between climate and human-induced dryland degradation[J]. Journal of Arid Environments, 2004, 57(4): 535-554. DOI: 10.1016/S0140-1963(03)00121-6
doi: 10.1016/S0140-1963(03)00121-6
36 ZHOU Wei, GANG Chengcheng, LI Jianlong, et al. Spatial-temporal dynamics of grassland coverage and its response to climate change in China during 1982-2010[J]. Acta Geographica Sinica, 2014, 69(1): 15-30.
36 周伟,刚成诚,李建龙,等.1982-2010年中国草地覆盖度的时空动态及其对气候变化的响应[J]. 地理学报, 2014, 69(1): 15-30.
37 SUN Z, MAO Z, YANG L, et al. Impacts of climate change and afforestation on vegetation dynamic in the Mu Us Desert, China[J]. Ecological Indicators. 2021, 129. DOI: 10.1016/j.ecolind.2021.108020
doi: 10.1016/j.ecolind.2021.108020
38 GAO W, ZHENG C, LIU X, et al. NDVI-based vegetation dynamics and their responses to climate change and human activities from 1982 to 2020: A case study in the Mu Us Sandy Land, China[J]. Ecological Indicators, 2022, 137. DOI: 10.1016/j.ecolind.2022.108745
doi: 10.1016/j.ecolind.2022.108745
39 XU Xiaoyu, GUO Ping, ZHANG Fan, et al. Analysis for changing ecological effects under policy-driven in Shiyang River Basin[J]. Journal of Soil and Water Conservation. 2020, 34(6): 185-191.徐晓宇,郭萍,张帆,等.政策驱动下石羊河流域生态效应变化分析[J]. 水土保持学报, 2020, 34(6): 185-191.
40 YIN G, HU Z, CHEN X . et al. Vegetation dynamics and its response to climate change in Central Asia[J]. Journal of Arid Land,2016,8(3):375-388. DOI:10.1007/s40333-016-0043-6
doi: 10.1007/s40333-016-0043-6
[1] 李秋萍,李雪梅,龚志远,秦启勇,张博. 兰州市中心城区内涝时空格局和成因分析[J]. 遥感技术与应用, 2023, 38(4): 935-944.
[2] 黄仲良,何敬,刘刚,李政. 面向GEE平台的遥感影像分析与应用研究进展[J]. 遥感技术与应用, 2023, 38(3): 527-534.
[3] 毕文君,侯吉宇,周艳莲. 不同时间尺度植被近红外反射率指数与生态系统总初级生产力关系研究[J]. 遥感技术与应用, 2023, 38(2): 465-478.
[4] 韩鹏,郭桂祯,李鑫磊,刘菁菁. 基于地理探测器的福建省台风灾情影响因素分析[J]. 遥感技术与应用, 2023, 38(2): 487-495.
[5] 王蕊,拜得珍,尹芳,刘磊. 湟水流域2000—2019年植被变化趋势特征和延续性分析[J]. 遥感技术与应用, 2022, 37(6): 1504-1512.
[6] 史志方,熊广成,尹利娜,刘桢,芦艳艳,刘小燕,闰亚迪,崔耀平. 丹江口水库扩张对淅川县“三生空间”的影响研究[J]. 遥感技术与应用, 2022, 37(6): 1525-1536.
[7] 崔泽鹏,王志慧,肖培青,申震洲,常晓格,石永磊,马力. 2000—2018年黄河上中游地区蒸散发年际时空变化及其影响因素分析[J]. 遥感技术与应用, 2022, 37(4): 865-877.
[8] 韦中晖,靳海亮,顾晓鹤,杨英茹,王庚泽,潘瑜春. 基于多时相协同变化检测的耕地撂荒遥感监测[J]. 遥感技术与应用, 2022, 37(3): 539-549.
[9] 丁书培,李蒙蒙,汪小钦,李琳,吴瑞姣,黄姮. 基于时序遥感数据的福州市耕地非农化特征及驱动因子分析[J]. 遥感技术与应用, 2022, 37(3): 550-563.
[10] 关士英,谢传节,袁占良,刘高焕. 基于SVM的高分时序冬小麦种植区提取研究[J]. 遥感技术与应用, 2022, 37(3): 629-637.
[11] 赵传武,郭伟,阎跃观,戴华阳,张建. 典型资源型城市的植被覆盖变化及驱动力分析[J]. 遥感技术与应用, 2022, 37(2): 389-398.
[12] 符冰雪,张继超,杜文杰,王鹏龙,孙中昶. 一种不透水面精细制图新方法及其在城市SDGs指标评估上的应用[J]. 遥感技术与应用, 2021, 36(6): 1339-1349.
[13] 刘焕军,马雨阳,杨昊轩,姜芸,巩超,吕航. 引入NDVI改进SRTM DEM的新方法[J]. 遥感技术与应用, 2021, 36(5): 1083-1091.
[14] 吴川虎,陶于祥,罗小波. 基于Google Earth Engine的重庆市植被指数长时间序列S-G滤波方法的改进与实现[J]. 遥感技术与应用, 2021, 36(5): 1189-1198.
[15] 陈康明,朱旭东. 基于Google Earth Engine的南方滨海盐沼植被时空演变特征分析[J]. 遥感技术与应用, 2021, 36(4): 751-759.