遥感技术与应用 2023, Vol. 38 Issue (5): 1180-1191 DOI: 10.11873/j.issn.1004-0323.2023.5.1180 |
遥感应用 |
|
|
|
|
基于马尔科夫随机场的PLANET高分影像滑坡提取研究 |
高梦洁1,2,3( ),陈方1,2,3( ),王雷1,2,杨阿强1,2,于博1,2 |
1.中国科学院空天信息创新研究院,中国科学院数字地球重点实验室,北京 100094 2.可持续发展大数据国际研究中心,北京 100094 3.中国科学院大学,资源与环境学院,北京 100049 |
|
Research on Extraction of Landslide from PLANET High Spatial Resolution Remote Sensing Image based on Markov Random Field |
Mengjie GAO1,2,3( ),Bo YU1,2,3( ),Lei WANG1,2,Aqiang YANG1,2,Fang CHEN1,2 |
1.Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,No. 9 Dengzhuang South Road,Beijing 100094,China 2.International Research Center of Big Data for Sustainable Development Goals,Beijing 100094,China 3.University of Chinese Academy of Sciences,Beijing 100049,China |
引用本文:
高梦洁,陈方,王雷,杨阿强,于博. 基于马尔科夫随机场的PLANET高分影像滑坡提取研究[J]. 遥感技术与应用, 2023, 38(5): 1180-1191.
Mengjie GAO,Bo YU,Lei WANG,Aqiang YANG,Fang CHEN. Research on Extraction of Landslide from PLANET High Spatial Resolution Remote Sensing Image based on Markov Random Field. Remote Sensing Technology and Application, 2023, 38(5): 1180-1191.
链接本文:
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.5.1180
或
http://www.rsta.ac.cn/CN/Y2023/V38/I5/1180
|
1 |
GHORBANZADEH O, BLASCHKE T, GHOLAMNIA K, et al. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection[J].Remote Sensing,2019,11(2).DOI:10.3390/rs11020196
doi: 10.3390/rs11020196
|
2 |
ZHANG Y, WU W, QIN Y, et al. Mapping landslide hazard risk using random forest algorithm in Guixi, Jiangxi, China [J]. ISPRS International Journal of Geo-Information,2020,9(11):695.DOI:10.3390/ijgi9110695
doi: 10.3390/ijgi9110695
|
3 |
LU P, QIN Y, LI Z, et al. Landslide mapping from multi-sensor data through improved change detection-based markov random field[J]. Remote Sensing of Environment, 2019, 231:111235.
|
4 |
ZHANG Haitao. Key techniques study of landslides extraction based on high-resolution remote sensing images[D]. Wuhan:China University of Geoscience, 2017.
|
4 |
张海涛. 基于高分影像的滑坡提取关键技术研究[D]. 武汉:中国地质大学(武汉), 2017.
|
5 |
LI Deren. Towards photogrammetry and remote sensing: Status and future development[J]. Journal of Wuhan Technical University of Surveying and Mapping,2000,25(1):1-6.
|
5 |
李德仁. 摄影测量与遥感的现状及发展趋势[J]. 武汉测绘科技大学学报, 2000,25(1):1-6.
|
6 |
JIA Jutao. Automatic identification of landslide based on GF-1 satellite image—Taking Shuicheng county of Guizhou province as an example[D]. Mianyang:Southwest University of Science and Technology, 2020.
|
6 |
贾菊桃. 基于高分一号卫星影像的滑坡自动识别[D]. 绵阳:西南科技大学, 2020.
|
7 |
WANG Ning, CHEN Fang, YU Bo. A object-oriented landslide extraction method based on morphological opening operation[J]. Remote Sensing Technology and Application. 2018, 33(3): 520-529.
|
7 |
王宁, 陈方, 于博. 基于形态学开运算的面向对象滑坡提取方法研究[J]. 遥感技术与应用, 2018, 33(3): 520-529.
|
8 |
GAO Siyan, HUANG Shifeng, SUN Yayong, et al. Research on the application of sentinel-1 SAR data in monitoring of landslide disaster in Maoxian county Sichuan[J]. Journal of China Institute of Water Resources and Hydropower Research, 2019, 17(2): 132-8.
|
8 |
高思远, 黄诗峰, 孙亚勇,等. Sentinel-1 SAR数据在四川茂县山体滑坡灾害监测中的应用研究[J]. 中国水利水电科学研究院学报, 2019, 17(2): 132-138.
|
9 |
GORSEVSKI P V, BROWN M K, PANTER K, et al. Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: A case study in the Cuyahoga Valley National Park,Ohio[J]. Landslides, 2016, 13(3): 467-484.
|
10 |
MONDINI A C, GUZZETTI F, REICHENBACH P, et al. Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images[J]. Remote Sensing of Environment, 2011, 115(7): 1743-1757.
|
11 |
DANNEELS G, PIRARD E, H-B HAVENITH, et al. Automatic landslide detection from remote sensing images using supervised classification methods[C]∥ IGARSS: 2007 Ieee International Geoscience and Remote Sensing Symposium, Vols 1-12:Sensing and Understanding Our PlanET.2007: 3014-+. 10.1109/IGARSS.2007.4423479
doi: 10.1109/IGARSS.2007.4423479
|
12 |
STUMPF A, KERLE N. Object-oriented mapping of landslides using random forests [J]. Remote Sensing of Environment, 2011, 115(10): 2564-2577.
|
13 |
WANG Heping, YUAN Huijie, LIU Zhengjun, et al. Research on object-oriented landslide extraction method based on visible image[J]. Geospatial Information,2020, 18(2): 108-12+8.
|
13 |
王和平, 袁慧洁, 刘正军, 等. 基于可见光影像的面向对象滑坡提取方法研究[J]. 地理空间信息, 2020, 18(2): 108-12+8.
|
14 |
LU P, STUMPF A, KERLE N,et al. Object-oriented change detection for landslide rapid mapping[J]. IEEE Geoscience And Remote Sensing Letters, 2011, 8(4): 701-705.
|
15 |
SI A, ZHANG J, TONG S, et al. Regional landslide identification based on susceptibility analysis and change detection [J]. ISPRS International Journal of Geo-Information, 2018, 7(10):394.
|
16 |
XU Qiao, MENG Fanli, YU Shaohuai. Landslide remote sensing interpretation based on object-oriented random forest classification model[J]. Journal of China & Foreign Highway, 2019, 39(3): 30-34.
|
16 |
徐乔, 孟凡利, 余绍淮. 基于面向对象随机森林分类模型的滑坡遥感解译[J]. 中外公路, 2019, 39(3): 30-34.
|
17 |
CHEN W, LI X, WANG Y, et al. Forested landslide detection using lidar data and the random forest algorithm: A case study of the Three Gorges, China[J]. Remote Sensing Of Environment, 2014, 152: 291-301.
|
18 |
LIU P, WEI Y, WANG Q, et al. A research on landslides automatic extraction model based on the improved mask R-CNN[J]. ISPRS International Journal of Geo-Information, 2021, 10(3):168.
|
19 |
YI Y, ZHANG W. A new deep-learning-based approach for earthquake-triggered landslide detection from single-temporal rapideye satellite imagery [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 6166-6176.
|
20 |
FU Xiao, GUO Jiawei, LIU Xiuju, et al. Method of earthquake landslide information extraction based on high resolution unmanned aerial vehicle images[J]. Journal of Seism Ological Research, 2018, 41(2): 186-191.
|
20 |
付萧, 郭加伟, 刘秀菊, 等. 无人机高分辨率遥感影像地震滑坡信息提取方法[J]. 地震研究, 2018, 41(2): 186-191.
|
21 |
YU B, CHEN F, XU C. Landslide detection based on contour-based deep learning framework in case of national scale of Nepal in 2015[J]. Computers & Geosciences, 2020, 135:104388.
|
22 |
CHEN F, YU B, XU C, et al. Landslide detection using probability regression, A case study of Wenchuan, northwest of Chengdu [J]. Applied Geography, 2017, 89: 32-40.
|
23 |
SHAO X, MA S, XU C, et al. Planet image-based inventorying and machine learning-based susceptibility mapping for the landslides triggered by the 2018 mw6.6 Tomakomai,Japan earthquake [J]. Remote Sensing, 2019, 11(8):978.
|
24 |
YAMAGISHI H, YAMAZAKI F. Landslides by the 2018 Hokkaido Iburi-Tobu earthquake on september 6[J]. Landslides, 2018, 15(12): 2521-2524.
|
25 |
QIN Xuan. Improvement and application of random forest algorithm[D]. Lanzhou:Lanzhou Jiaotong University, 2020.
|
25 |
秦璇. 随机森林算法的改进及应用[D]. 兰州:兰州交通大学, 2020.
|
26 |
AKINCI H, KILICOGLU C, DOGAN S. Random forest-based landslide susceptibility mapping in coastal regions of Artvin,Turkey[J].Isprs International Journal of Geo-Information, 2020,9(9):553.
|
27 |
BAI Jie, JU Nengpan, ZHANG Chengqiang, et al. Characteristics and successful early warning case of Xingyi landslide in Guizhou province[J]. Journalof Engineering Geology, 2020, 28(6): 1246-1258.
|
27 |
白洁, 巨能攀, 张成强, 等. 贵州兴义滑坡特征及过程预警研究[J]. 工程地质学报, 2020, 28(6): 1246-1258.
|
28 |
LIU Guangyu, HUANG Yi, CAO Yu, et al. Research on extraction of image texture feature based on gray co-occurrence matrix[J]. Technology Wind, 2021, (12): 61-64.
|
28 |
刘光宇, 黄懿, 曹禹, 等. 基于灰度共生矩阵的图像纹理特征提取研究[J]. 科技风, 2021, (12): 61-64.
|
29 |
LI Z, SHI W, LU P, et al. Landslide mapping from aerial photographs using change detection-based Markov random field[J]. Remote Sensing of Environment,2016,187:76-90.
|
30 |
MENZE B H, KELM B M, MASUCH R, et al. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data [J]. Bmc Bioinformatics, 2009, 10:1-16.
|
31 |
WAN S, LEI T C, MA H L, et al. The Analysis on similarity of spectrum analysis of landslide and bareland through hyper-spectrum image bands[J]. Water, 2019, 11(11):2414.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|