Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (5): 1203-1214    DOI: 10.11873/j.issn.1004-0323.2023.5.1203
遥感应用     
基于GIS邻域分析的无人机倾斜影像阔叶林树高提取方法研究
廖孟光1(),李猛1,2,褚楠2,3(),李少宁1
1.湖南科技大学 地球科学与空间信息工程学院,湖南 湘潭 411201
2.湖南科技大学 地理空间信息技术国家地方联合工程实验室,湖南 湘潭 411201
3.湖南科技大学 区域可持续发展研究院,湖南 湘潭 411201
Research on Extraction Method of Single Tree Height from UAV Oblique Images Broad-Leaved Forest based on GIS Neighborhood Analysis
Mengguang LIAO1(),Meng LI1,2,Nan CHU2,3(),Shaoning LI1
1.School of Earth Sciences and Spatial lnformation Engineering,Hunan University of Science and Technology,Xiangtan 411201,China
2.National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology,Hunan University of Science and Technology,Xiangtan 411201,China
3.Instiute for Local Sustainable Development Goals,Hunan University of Science and Technology,Xiangtan 411201,China
 全文: PDF(6694 KB)   HTML
摘要:

无人机遥感技术可快速获取测区冠层高度模型(CHM),如何从CHM中更加准确识别树顶点,是树高提取的关键。分析了不同窗口类型、窗口大小以及林分郁闭度对树顶点提取的影响,以高校校区为研究区,根据郁闭度选取密集林地和稀疏林地2块局部区域,分别利用GIS矩形邻域分析、GIS圆形邻域分析和局部最大值算法提取树顶点。结果表明:树顶点提取精度不仅受窗口大小、林分郁闭度影响,而且和窗口类型密切相关,且GIS矩形邻域分析提取树顶点的结果更加稳定,精度更高,其F测度值在密集林地最高为78.13%、稀疏林地为96.94%。将基于该结果得到的树顶点对应的提取树高与实地测量的树高值对比,密集林地的均方根误差为37 cm,稀疏林地的均方根误差为39 cm。结果证明了基于小型无人机可见光遥感技术提取较高郁闭度阔叶林树高的可行性,为后续基于冠层高度模型识别树顶点提供方法借鉴,提高树高提取精度。

关键词: 消费级无人机倾斜测量树高局部最大值算法邻域分析    
Abstract:

UAV remote sensing technology can quickly obtain the Canopy Height Model(CHM) of the survey area. How to identify tree vertices more accurately from CHM is key to tree height extraction. This paper discusses the influence of different window types, window sizes, and stand canopy density on the extraction of tree vertices. Using the university campus as the study area, two local areas of dense and sparse forest land were selected based on canopy density. GIS rectangular neighborhood analysis, GIS circular neighborhood analysis, and local maximum algorithm are used to extract tree vertices. The results show that the accuracy of tree vertex extraction is not only affected by the window size and canopy density, but also closely related to the window type, and the result of GIS rectangular neighborhood analysis to extract tree vertices is more stable and accurate, and the highest F-Measure value is 78.13% in dense forest, and 96.94% in sparse forest. Comparing the extracted tree heights corresponding to the tree vertices obtained based on this result with the tree height values measured in the field, the RMSE is 37cm for dense forest and 39cm for sparse forest. The results proved the feasibility of extracting tree heights of broad-leaved forests with higher canopy density based on the visible light remote sensing technology of small UAVs, which provided a reference for the subsequent identification of tree vertices based on the canopy height model and improved the accuracy of tree height extraction.

Key words: Small consumer UAV    Tilt photogrammetry    Tree height    Local maximum algorithm    Neighborhood analysis
收稿日期: 2022-05-13 出版日期: 2023-11-07
ZTFLH:  TP79  
基金资助: 湖南省自然科学基金项目(2022JJ30254);湖南省教育厅基金项目(19C0744);湖南省自然资源科技计划项目(2022-29)
通讯作者: 褚楠     E-mail: liaomengguang@163.com;chun_hnust@163.com
作者简介: 廖孟光(1985-),男,湖南安化人,副教授,主要从事无人机航测及应用等研究。E?mail: liaomengguang@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
廖孟光
李猛
褚楠
李少宁

引用本文:

廖孟光,李猛,褚楠,李少宁. 基于GIS邻域分析的无人机倾斜影像阔叶林树高提取方法研究[J]. 遥感技术与应用, 2023, 38(5): 1203-1214.

Mengguang LIAO,Meng LI,Nan CHU,Shaoning LI. Research on Extraction Method of Single Tree Height from UAV Oblique Images Broad-Leaved Forest based on GIS Neighborhood Analysis. Remote Sensing Technology and Application, 2023, 38(5): 1203-1214.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.5.1203        http://www.rsta.ac.cn/CN/Y2023/V38/I5/1203

图1  研究区分布图
图2  野外实测树木分布图
图3  野外样地数据采集
图4  技术路线
图5  数字高程模型
图6  冠层高度模型获取
图7  GIS邻域分析
图8  数字高程模型误差分布
图9  F测度统计图
样地方法参考树顶点数/个提取树顶点数/个TPFPFNR/%P/%F/%
稀疏林地矩形邻域分析9898953396.9496.9496.94
圆形邻域分析9899953396.9495.9696.45
局部最大值法98102966297.9694.1296.00
密集林地矩形邻域分析154166125412981.1775.3078.13
圆形邻域分析154198129692583.7765.1573.30
局部最大值法154170126442881.8274.1277.78
表1  树顶点提取数目统计
图10  GIS矩形邻域分析树顶点提取结果
样地树高类型平均值/m最大/m最小/m最大误差/m最小误差/m
稀疏林地实测4.626.462.561.89-0.58
提取4.385.982.11
密集林地实测7.5011.423.271.35-0.56
提取7.3611.452.73
表2  树高提取值与实测值统计量
图11  树高实测值与提取值的绝对误差统计
图12  实测树高与提取树高回归关系
1 WANG Juan, CHEN Yongfu, CHEN Qiao, et al. Research on forest parameter information extraction progress driven by UAV remote sensing technology[J]. Forest Resource Mangement,2020(5):144-151.
1 王娟, 陈永富, 陈巧, 等. 基于无人机遥感的森林参数信息提取研究进展[J].林业资源管理,2020(5):144-151.
2 HOU Hongya, WANG Lihai, XU Huadong, et al. Error analysis of tree height estimation based on eye measurement[J]. Forest Engineering,2012,28(2):6-8.
2 侯红亚, 王立海, 徐华东, 等. 目测法估测树高的误差分析[J].森林工程,2012,28(2):6-8.
3 FENG Zhongke, SUI Hongda, DENG Xiangrui, et al. Survey and precision analysis of tree height by trigonometric leveling[J]. Journal of Beijing Forestry University,2007,29(S2):31-35.
3 冯仲科,隋宏大,邓向瑞,等. 三角高程法树高测量与精度分析[J].北京林业大学学报,2007,29():31-35.
4 LUO Yubo, HUANG Hongyu, TANG Liyu, et al. Tree height and diameter extraction with 3D reconstruction in a forest based on TLS[J]. Remote Sensing Technology and Application,2019,34(2):243-252.
4 骆钰波, 黄洪宇, 唐丽玉, 等. 基于地面激光雷达点云数据的森林树高、胸径自动提取与三维重建[J].遥感技术与应用,2019,34(2):243-252.
5 WU Bin, YU Bailang, YUE Wenhui, et al. Method for identifying individual street trees from the cloud data of the vehicle-borne laser scanning points[J]. Journal of East China Normal University(Natural Science),2013(2):38-49.
5 吴宾, 余柏蒗, 岳文辉, 等. 一种基于车载激光扫描点云数据的单株行道树信息提取方法[J].华东师范大学学报(自然科学版),2013(2):38-49.
6 BIAN Rui, NIAN Yanyun, GOU Xiaohua. Analysis of forest canopy height based on UAV LiDAR: A case study of picea crassifolia in the east and central of the Qilian mountains[J]. Remote Sensing Technology and Application,2021,36(3):511-520.
6 边瑞, 年雁云, 勾晓华, 等. 基于无人机激光雷达的森林冠层高度分析——以祁连山东、中部青海云杉为例[J].遥感技术与应用,2021,36(3):511-520.
7 HU Tianqin, WANG Zhenxi, HAO Kangdi, et al. Extraction of individual tree height using WorldView-3 remote sensing images and airborne LiDAR[J]. Journal of Arid Land Resources and Environment,2022,36(10):166-175.
7 胡天祺, 王振锡, 郝康迪, 等. 基于WorldView-3遥感影像与机载LiDAR的单木树高提取[J].干旱区资源与环境,2022,36(10):166-175.
8 ZHOU Ye, LIU Yunbo, ZHENG Libo, et al. Precision analysis of single tree parameter extraction for multi-platform point cloud data[J]. Bulletin of Surveying and Mapping,2022(7):168-172.
8 周烨, 刘云波, 郑丽波, 等. 多平台点云数据的单木参数提取精度分析[J].测绘通报,2022(7):168-172.
9 HAO Zhengbang, LIN Lili, YU Kunyong, et al. Remote sensing estimation of stand parameters in a new chinese fir plantation from UAV three-dimensional information[J]. Journal of Southwest Forestry University(Natural Science),2023,43(1):108-116.
9 郝振帮, 林丽丽,余坤勇, 等. 基于无人机三维信息的杉木新造林林分参数遥感估测研究[J].西南林业大学学报(自然科学版),2023,43(1):108-116.
10 LIU He, GU Lingjia, REN Duanzhi. Research progress of forest parameter acquisition based on UAV remote sensing technology[J]. Remote Sensing Technology and Application,2021,36(3):489-501.
10 刘鹤, 顾玲嘉, 任瑞治. 基于无人机遥感技术的森林参数获取研究进展[J].遥感技术与应用,2021,36(3):489-501.
11 YANG Kun, ZHAO Yanling, ZHANG Jianyong, et al. Tree height extraction using high-resolution imagery acquired from an from an Unmanned Aerial Vehicle (UAV)[J]. Journal of Beijing Forestry University,2017,39(8):17-23.
11 杨坤, 赵艳玲, 张建勇, 等. 利用无人机高分辨率影像进行树木高度提取[J].北京林业大学学报,2017,39(8):17-23.
12 Jincheng LÜ, WANG Zhenxi, YANG Yongqiang, et al. Height extraction and growing stock inversion of picea schrenkianavar.tianshanica in Tianshan mountain based on UAV image[J]. Xinjiang Agricultural Sciences,2021,58(10):1838-1845.
12 吕金城, 王振锡, 杨勇强, 等. 基于无人机影像的天山云杉林树高提取及蓄积量的反演[J].新疆农业科学,2021,58(10):1838-1845.
13 ZHAO Yizhan, ZHOU Lü, PAN Yuanjin, et al. Accuracy verification of danger tree monitoring for general consumer UAV[J]. Bulletin of Surveying and Mapping,2021(S1):159-164.
13 赵一展, 周吕, 潘元进, 等. 一般消费级无人机的树障监测精度验证[J].测绘通报,2021():159-164.
14 XIE Qiaoya, YU Kunyong, DENG Yangbo, et al. Height measurement of cunninghamia lanceolata plantations based on UAV remote sensing[J]. Journal of Zhejiang A & F University,2019,36(2):335-342.
14 谢巧雅, 余坤勇, 邓洋波, 等. 杉木人工林冠层高度无人机遥感估测[J].浙江农林大学学报,2019,36(2):335-342.
15 ZHANG Haiqing, LI Xiangxin, WANG Cheng, et al. Individual tree height extraction from airborne LiDAR data by combining individual tree height with DSM[J]. Journal of Geo-Information Science,2021,23(10):1873-1881.
15 张海清, 李向新, 王成, 等. 结合DSM的机载LiDAR单木树高提取研究[J].地球信息科学学报,2021,23(10):1873-1881.
16 ZHOU Xiaocheng, LIAO Hongyan, CUI Yajun, et al. UAV remote sensing estimation of three-dimensional green volume inlandscaping:A case study in the Qishang campus of Fuzhou university[J]. Journal of Fuzhou University(Natural Science Edition),2020,48(6):699-705.
16 周小成, 廖鸿燕, 崔雅君, 等. 无人机遥感估算绿化园林三维绿量——以福州大学旗山校区为例[J].福州大学学报(自然科学版),2020,48(6):699-705.
17 GUO Yangguang, XIA Kai, YANG Yinhui, et al. Research on single tree detection and crown diameter and tree height extraction of pecan forest based on UAV images[J]. Journal of Forestry Engineering,2023,8(4):159-166.
17 郭阳光, 夏凯, 杨垠辉, 等. 基于无人机影像的山核桃单木检测及冠幅与树高的提取[J].林业工程学报,2023,8(4):159-166.
18 ZHANG Xiang, LIU Yang, YU Shan, et al. Research on extraction method of forest tree height based on Unmanned Aerial Vehicle LiDAR and multispectral data[J]. Forest Engineering,2023,39(1):29-36.
18 张翔, 刘洋, 玉山, 等.基于无人机激光雷达和多光谱数据的森林树高提取方法研究[J].森林工程,2023,39(1):29-36.
19 LIU Jiangjun, GAO Haili, FANG Luming, et al. Tree ertex and height extraction based on UAV imagery and analysis on its influencing factors[J]. Forest Resource Mangement,2019(4):107-116.
19 刘江俊, 高海力, 方陆明, 等. 基于无人机影像的树顶点和树高提取及其影响因素分析[J].林业资源管理,2019(4):107-116.
20 BAI Mingxiong, ZHANG Chao, CHEN Qi, et al. Study on the extraction of individual tree height based on UAV visual spectrum remote sensing[J]. Forest Resource Mangement,2021(1):164-172.
20 白明雄, 张超, 陈棋, 等. 基于无人机可见光遥感的单木树高提取方法研究[J].林业资源管理,2021(1):164-172.
21 WANG Lin, LI Mingyang, FANG Zihan, et al. Plantation forest parameter estimation based on UAV data[J]. Forest Resource Mangement,2019(5):61-67.
21 汪霖, 李明阳, 方子涵, 等. 基于无人机数据的人工林森林参数估测[J].林业资源管理,2019(5):61-67.
22 WANG Bin, SUN Hu, XU Qian, et al. Height measurement of a Cedar( Cedrus deodara) community based on Unmanned Aerial Vehicles(UAV) 3D photogrammetry technology[J]. Acta Ecologica Sinica,2018,38(10):3524-3533.
22 王彬, 孙虎, 徐倩, 等. 基于无人3D摄影技术的雪松(Cedrus deodara)群落高度测定[J].生态学报,2018,38(10):3524-3533.
23 ZHAO Wenjun, DING Zhiqi, WANG Hongsen. A new real estate measurement method based on fusion of obliquephotogrammetric real scene model data and LiDAR point cloud data[J]. Bulletin of Surveying and Mapping,2021(2):87-92.
23 赵文军, 丁智奇, 王泓森. 倾斜实景模型和LiDAR点云数据相融合的不动产测量新方法[J].测绘通报,2021(2):87-92.
24 DING Shaopeng, LIU Rufei, CAI Yongning, et al. A point cloud adaptive slope filtering method considering terrain[J]. Remote Sensing Information,2019,34(4):108-113.
24 丁少鹏, 刘如飞, 蔡永宁, 等. 一种顾及地形的点云自适应坡度滤波方法[J].遥感信息,2019,34(4):108-113.
25 ZHANG Gang, LIU Wenbin, ZHANG Nan. Progressive morphological filtering method of dense matching point cloud based on region feature segmentation[J]. Journal of Geo-Information Science,2019,21(4):615-622.
25 张刚, 刘文彬, 张男. 基于区域特征分割的密集匹配点云渐进形态学滤波[J].地球信息科学学报,2019,21(4):615-622.
26 ZHOU Liang, WAN Yunxin, SUN Chang. An adaptive filtering algorithm of DSM based on smart terrain identification[J]. Geomatics & Spatial Information Technology,2016,39(7):18-20.
26 周亮, 万昀昕, 孙畅. 基于地形智能识别的自适应DSM滤波方法研究[J].测绘与空间地理信息,2016,9(7):18-20.
27 ZHANG W, QI J, WAN P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing. 2016, 8(6):501. DOI:10.3390/rs8060501
doi: 10.3390/rs8060501
28 WANG Kai. Research on point cloud filtering algorithm and feature extraction of airborne lidar[D]. Nanchang: East China University of Technology,2021.
28 王凯.机载激光雷达点云滤波算法及地面特征提取研究[D].南昌:东华理工大学,2021.
29 WANG Xiaoqin, WANG Miaomiao, WANG Shaoqiang, et al. Extraction of vegetation information from visible unmanned aerial vehicle images[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(5):152-159.
29 汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J].农业工程学报,2015,31(5):152-159.
30 DRALLE K, RUDEMO M.Automatic estimation of individual tree positions from aerial photos[J]. Canadian Journal of Forest Research,2008, 27(11):1728-1736. DOI:10.1139/cjfr-27-11-1728
doi: 10.1139/cjfr-27-11-1728
31 POULIOT D A, KING D J, BELL F W,et al.Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration[J]. Remote Sensing of Environment, 2002, 82(2-3):322-334. DOI:10.1016/S0034-4257(02)00050-0
doi: 10.1016/S0034-4257(02)00050-0
32 WULDER M, NIEMANN K O, GOODENOUGH D G.Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery[J]. Remote Sensing of Environment, 2000, 73(1):103-114. DOI:10.1016/S0034-4257(00)00101-2
doi: 10.1016/S0034-4257(00)00101-2
33 CULVENOR D S.TIDA: an algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery[J]. Computers & Geosciences, 2002, 28(1):33-44. DOI:10.1016/S0098-3004(00)00110-2
doi: 10.1016/S0098-3004(00)00110-2
34 LI Xiang, ZHEN Zhen, ZHAO Yinhui. Suitable model of detecting the position of individual treetop based on local maximum method[J]. Journal of Beijing Forestry University,2015,37(3):27-33.
34 李响, 甄贞, 赵颖慧. 基于局域最大值法单木位置探测的适宜模型研究[J].北京林业大学学报,2015,37(3):27-33.
35 LIU Qingwang, LI Zengyuan, CHEN Erxue, et al. Extracting height and crown of individual tree using airborne LiDAR data[J].Journal of Beijing Forestry University,2008,30(6):83-89.
35 刘清旺, 李增元, 陈尔学, 等. 利用机载激光雷达数据提取单株木树高和树冠[J].北京林业大学学报,2008,30(6):83-89.
36 YANG Qiuli, WEI Jianxin, ZHENG Jianghua, et al. Comparison of interpolation methods of digital elevation model using discrete point cloud data[J]. Science of Surveying and Mapping,2019,44(7):16-23.
36 杨秋丽, 魏建新, 郑江华, 等. 离散点云构建数字高程模型的插值方法研究[J].测绘科学,2019,44(7):16-23.
37 CHEN Zhoujuan, CHENG Guang, BU Yuankun, et al. Single tree parameters extraction of broad-leaved forest based on UAV tilting photography[J]. Forest Resource Mangement,2022(1):132-141.
37 陈周娟, 程光, 卜元坤, 等. 基于无人机倾斜影像的阔叶林单木参数提取[J].林业资源管理,2022(1):132-141.
38 DU Yihong, YIN Tian, ZHOU Xuemei, et al. Extraction of individual tree parameters of chinese pine by oblique photogrammetry[J]. Journal of Beijing Forestry University,2021,43(4):77-86.
38 杜意鸿,尹田,周雪梅,等. 倾斜摄影测量技术提取油松单木信息[J].北京林业大学学报,2021,43(4):77-86.
39 GAO Fei, SHI Haijing, SHUI Junfeng, et al. Structural parameter extraction of artificial forest in northern Shaanxi based on UAV high-resolution image[J]. Science of Soil and Water Conservation,2021,19(4):1-12.
39 高飞, 史海静, 税军峰, 等. 基于UAV高分影像的陕北人工林结构参数提取[J].中国水土保持科学,2021,19(4):1-12.
40 LIU Haoran, FAN Weiwei, XU Yongsheng, et al. Single tree biomass estimation based on UAV LiDAR point cloud[J]. Journal of Central South University of Forestry & Technology,2021,41(8):92-99.
40 刘浩然, 范伟伟, 徐永胜, 等. 基于无人机激光雷达点云的单木生物量估测[J].中南林业科技大学学报,2021,41(8):92-99.
41 ZHAO Chenyang, XING Yanqiu, HUO Da,et al. Key technologies of three-dimensional geometric reconstruction of larch crown shape based on LiDAR data[J]. Journal of Northwest Forestry University,2015,30(2):186-190.
41 赵晨阳,邢艳秋, 霍达,等. 基于机载LiDAR落叶松树冠几何形状三维重建关键技术研究[J].西北林学院学报,2015,30(2):186-190.
[1] 张永永,税伟,冯洁,孙祥,孙晓瑞,刘橼锰,李慧. 基于无人机的喀斯特退化天坑地下森林树高特征研究[J]. 遥感技术与应用, 2022, 37(3): 681-691.
[2] 杨雪峰. 使用高分遥感影像获取塔里木河胡杨高度信息[J]. 遥感技术与应用, 2021, 36(5): 1199-1208.
[3] 骆钰波, 黄洪宇, 唐丽玉, 陈崇成, 张浩. 基于地面激光雷达点云数据的森林树高、胸径自动提取与三维重建[J]. 遥感技术与应用, 2019, 34(2): 243-252.
[4] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[5] 李兰,陈尔学,李增元,冯琦,赵磊. 合成孔径雷达森林树高和地上生物量估测研究进展[J]. 遥感技术与应用, 2016, 31(4): 625-633.
[6] 冯琦,陈尔学,李增元,李兰,赵磊. 机载XG波段双天线InSAR 数据森林树高估测方法[J]. 遥感技术与应用, 2016, 31(3): 551-557.
[7] 王金亮,程峰,王成,陈联君,王小花. 基于ICESat-GLAS数据估算复杂地形区域森林蓄积量潜力初探—以云南香格里拉县为例[J]. 遥感技术与应用, 2012, 27(1): 45-50.
[8] 唐菲菲,阮志敏,刘星,张亚利. 基于机载激光雷达数据识别单株木的新方法[J]. 遥感技术与应用, 2011, 26(2): 196-201.
[9] 李 哲, 陈尔学, 王 建. 几种极化干涉SAR森林平均高反演算法的比较评价[J]. 遥感技术与应用, 2009, 24(5): 611-616.