遥感技术与应用 2023, Vol. 38 Issue (5): 1215-1225 DOI: 10.11873/j.issn.1004-0323.2023.5.1215 |
遥感应用 |
|
|
|
|
一种图像回归与关联关系特征融合的遥感影像变化检测方法 |
马宗方( ),郝凡( ),宋琳,麻瑞 |
西安建筑科技大学信息与控制工程学院,陕西 西安 710055 |
|
Image Regression and Association-based Feature Fusion for Remote Sensing Image Change Detection |
Zongfang MA( ),Fan HAO( ),Lin SONG,Rui MA |
College of Information and Control Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China |
引用本文:
马宗方,郝凡,宋琳,麻瑞. 一种图像回归与关联关系特征融合的遥感影像变化检测方法[J]. 遥感技术与应用, 2023, 38(5): 1215-1225.
Zongfang MA,Fan HAO,Lin SONG,Rui MA. Image Regression and Association-based Feature Fusion for Remote Sensing Image Change Detection. Remote Sensing Technology and Application, 2023, 38(5): 1215-1225.
链接本文:
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.5.1215
或
http://www.rsta.ac.cn/CN/Y2023/V38/I5/1215
|
1 |
HAO F, MA Z F, TIAN H P, et al. Semi-supervised label propagation for multi-source remote sensing image change detection[J]. Computers & Geosciences, 2023, 170: 105249. DOI: 10.1016/j.cageo.2022.105249
doi: 10.1016/j.cageo.2022.105249
|
2 |
GUO Qing, ZHU Liya, LI An, et al. Landslide identification method based on NDVI change detection [J]. Remote Sensing Technology and Application,2022,37(1): 17-23.
|
2 |
郭擎,朱丽娅,李安,等.基于NDVI变化检测的滑坡遥感精细识别[J]. 遥感技术与应用, 2022,37(1):17-23.
|
3 |
WANG Yuan, CHEN Fulong, HU Qi, et al. Urban change detection based on COSMO-SkyMed multi-temporal images in Nanjing city, China[J]. Remote Sensing Technology and Application, 2019, 34(5): 1054-1063.
|
3 |
王源,陈富龙,胡祺,等.COSMO-SkyMed时序影像南京城市变化检测研究[J]. 遥感技术与应用, 2019, 34(5) :1054-1063.
|
4 |
WANG Chongyang, TIAN Xin. Forest cover change detection based on GF-1 PMS data[J]. Remote Sensing Technology and Application,2021,36(1):208-216.
|
4 |
王崇阳,田昕.基于GF-1 PMS 数据的森林覆盖变化检测[J].遥感技术与应用,2021,36(1): 208-216 .
|
5 |
SUN Y, LEI L, TAN X, et al. Structured graph based image regression for unsupervised multimodal change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 185: 16-31.
|
6 |
ZHANG Mingzhe, ZHANG Hong, WANG Chao, et al. Combining super-pixel segmentation and multiple difference maps for SAR change detection[J]. Remote Sensing Technology and Application, 2016,31(3):481 -487.
|
6 |
张明哲,张红,王超,等.基于超像素分割和多方法融合的SAR图像变化检测方法[J]. 遥感技术与应用, 2016,31(3) : 481-487.
|
7 |
MOSER G, ANFINSEN S N, LUPPINO L T, et al. Change detection with heterogeneous remote sensing data: From semi-parametric regression to deep learning[C]∥IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2020: 3892-3895.
|
8 |
SUN Y, LEI L, LI X, et al. Patch similarity graph matrix-based unsupervised remote sensing change detection with homogeneous and heterogeneous sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6): 4841-4861.
|
9 |
ZHOU W, TROY A, GROVE M. Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data[J]. Sensors, 2008, 8(3): 1613-1636. DOI:10.3390/s8031613
doi: 10.3390/s8031613
|
10 |
WAN L, XIANG Y, YOU H. An object-based hierarchical compound classification method for change detection in heterogeneous optical and SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 9941-9959.
|
11 |
LIU Z, LI G, MERCIER G, et al. Change detection in heterogenous remote sensing images via homogeneous pixel transformation[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1822-1834.
|
12 |
LUPPINO L T, BIANCHI F M, MOSER G, et al. Unsupervised image regression for heterogeneous change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 9960-9975.
|
13 |
LIU J, GONG M, QIN K, et al. A deep convolutional coupling network for change detection based on heterogeneous optical and radar images[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(3): 545-559.
|
14 |
GONG M, NIU X, ZHAN T,et al. A coupling translation network for change detection in heterogeneous images[J]. International Journal of Remote Sensing,2019,40(9):3647-3672.
|
15 |
LIU Z G, ZHANG Z W, PAN Q, et al. Unsupervised change detection from heterogeneous data based on image translation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 99: 1-13.
|
16 |
WANG X, CHENG W, FENG Y, et al. TSCNet: topological structure coupling network for change detection of heterogeneous remote sensing images[J]. Remote Sensing, 2023, 15(3): 621. DOI: 10.3390/rs15030621
doi: 10.3390/rs15030621
|
17 |
LIANG X Y, QIAN Y H, GUO Q, et al. AF: An association-based fusion method for multi-modal classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021(1): 1-1. DOI:10.1109/tpami.2021.3125995
doi: 10.1109/tpami.2021.3125995
|
18 |
CHENG G, WANG G, HAN J. ISNet: Towards improving separability for remote sensing image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-11.
|
19 |
ZHANG M, LI Q, MIAO Y, et al. Difference-guided aggregation network with multi-image pixel contrast for change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-14.
|
20 |
BERGAMASCO L, SAHA S, BOVOLO F, et al. Unsupervised change detection using convolutional-autoencoder multiresolution features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-19.
|
21 |
SUN Y, LEI L, GUAN D, et al. Sparse-constrained adaptive structure consistency-based unsupervised image regression for heterogeneous remote-sensing change detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-14.
|
22 |
KRINIDIS S, CHATZIS V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19(5): 1328-1337.
|
23 |
WU Y, LI J, YUAN Y, et al. Commonality autoencoder: Learning common features for change detection from heterogeneous images[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(9):4257-4270.
|
24 |
ZHANG Y, ZHANG J X. Measure of information content of remotely sensed images accounting for spatial correlation[J]. Acta Geodaetica et Cartographica Sinica, 2015,44(10):1117-1124.
|
24 |
张盈,张景雄. 顾及空间相关性的遥感影像信息量的度量方法[J].测绘学报, 2015, 44(10): 1117-1124.
|
25 |
ZHAN T, GONG M, JIANG X, et al. Unsupervised scale-driven change detection with deep spatial-spectral features for VHR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5653-5665.
|
26 |
ZANETTI M, BRUZZONE L. A theoretical framework for change detection based on a compound multiclass statistical model of the difference image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 1129-1143.
|
27 |
VOLPI M, CAMPS-VALLS G, TUIA D. Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 107: 50-63.
|
28 |
SERRA P, PONS X, SAURI D. Post-classification change detection with data from different sensors:Some accuracy considerations[J]. International Journal of Remote Sensing, 2003, 24(16): 3311-3340.
|
29 |
BOVOLO F, BRUZZONE L. A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 1(45): 218-236.
|
30 |
NIELSEN A A. The regularized iteratively reweighted MAD method for change detection in multi-and hyperspectral data[J]. IEEE Transactions on Image Processing, 2007, 16(2): 463-478.
|
31 |
MIGNOTTE M. A fractal projection and Markovian segmentation-based approach for multimodal change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11): 8046-8058.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|