Please wait a minute...
img

官方微信

遥感技术与应用  2015, Vol. 30 Issue (5): 939-945    DOI: 10.11873/j.issn.1004-323.2015.5.0939
模型与反演     
高程和大气模式对FLAASH模型校正结果的影响
李述1,2,刘琪璟1,3
(1.南昌大学鄱阳湖环境与资源利用教育部重点实验室,江西 南昌 30029;
2.南昌大学资源环境与化工学院环境科学与工程系,江西 南昌 30031;
3.北京林业大学林学院,北京 00083)
Effect on Atmospheric Correction by Ground Elevation and Antmoshyric  model   parameters of FLAASH Model
Li Shu1,2,Liu Qijing1,3
 (1.Key Laboratory of Poyang Lake Environment and Resource Utilization,Ministry of Education,
Nanchang University,Nanchang 330029,China;
2.Department of Environmental Science and Engineering,School of Resources-Environment
and Chemical Engineer,Nanchang University,Nanchang 330031,China;
3.College of Forestry,Beijing Forestry University,Beijing 100083,China)
 全文: PDF 
摘要:

为探讨FLAASH大气校正模型对高程和大气模式参数的敏感性,以中纬度夏季和亚极地夏季大气模式过渡区的两景Landsat8 OLI遥感影像为基础,从高程、大气模式及其综合作用进行了对比分析。实验结果表明:①单景影像而言,FLAASH模型与高程和两种大气模式敏感性不强,各波段反射率平均值相差在0.21%以内;②在相邻两景影像重叠区,FLAASH模型与高程和大气模式敏感性明显加强,可见光波段反射率均值相差在0.5%~1.29%之间;③FLAASH模型能有效去除Landsat8影像的大气影响,并使图像信息增强,大气校正的作用效果在短波波段更加明显。

关键词: FLAASH模型Landsat8 OLI大气校正    
Abstract:

In order to analyze the sensitivity of Atmospheric Model and Ground Elevation to FLAASH model,the effects of Ground Elevation and atmospheric Model in FLAASH Model were systematically analyzed with two landsat8 OLI images which located in atmospheric model transition area of Mid-Latitude Summer and Sub-Arctic Summer.Preliminary results showed that:① The average difference of reflectance image was less than 0.21% ,which revealed that FLAASH model isn’t sensitive to atmospheric Model and Ground Elevation in the case of a single image;② In overlapping region of the two neighboring images,the average difference of reflectance image increased from 0.5% to 1.29% in visible bands,which show that sensitivity of Atmospheric Model and Ground Elevation to FLAASH model significantly increased;③ The FLAASH model can not only eliminate the effect of atmospheric scattering and atmospheric absorption upon Landsat8 images,but also can enhance image information.The effect of atmospheric correction was obvious especially in shortwave bands.

Key words: FLAASH model    Landsat 8    Atmospheric correction
收稿日期: 2014-08-08 出版日期: 2015-12-08
:  TP 79  
基金资助:

国家自然科学基金“鄱阳湖湖泊蝶形湖泊群鱼类集合群落时空格局及其构建过程的初步研究”(31260107),南昌大学“鄱阳湖环境与资源利用”教育部重点实验室开放基金资助项目(Z04407),江西省自然科学基金资助项目(20132BAB203024)。

 

通讯作者: 刘琪璟(1960-),男,辽宁大连人,教授。主要从事森林生态学研究。Email:liuqijing@gmail.com。    
作者简介: 李述(1974-),男,四川德阳人,讲师,博士研究生。主要从事环境遥感研究。Email:lishu@ncu.edu.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李述
刘琪璟

引用本文:

李述,刘琪璟. 高程和大气模式对FLAASH模型校正结果的影响[J]. 遥感技术与应用, 2015, 30(5): 939-945.

Li Shu,Liu Qijing. Effect on Atmospheric Correction by Ground Elevation and Antmoshyric  model   parameters of FLAASH Model. Remote Sensing Technology and Application, 2015, 30(5): 939-945.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-323.2015.5.0939        http://www.rsta.ac.cn/CN/Y2015/V30/I5/939

[1]Yang Xiaojun,Chen Yushi,Zhang Ye.Effect on Atmospheric Correction by Inputting Parameters of FLAASH Model[J].Remote Sensing Information,2008,(6):32-37,101.[杨校军,陈雨时,张晔.FLAASH模型输入参数对校正结果的影响[J].遥感信息,2008,(6):32-37,101.]

[2]Hadjimitsis D G,Papadavid G,Agapiou A,et al.Atmospheric Correction for Satellite Remotely Sensed Data Intended for Agricultural Applications:Impact on Vegetation Indices[J].Natural Hazards and Earth System Science,2010,10(1):89-95.

[3]Zheng Wei,Zeng Zhiyuan.A Review on Methods of Atmospheric Correction for Remote Sensing Images[J].Remote Sensing Information,2004,(4):66-70.[郑伟,曾志远.遥感图像大气校正方法综述[J].遥感信息,2004,(4):66-70.]

[4]Smith G M,Milton E J.The Use of the Empirical Line Method to Calibrate Remotely Sensed Data to Reflectance[J].International Journal of Remote Sensing,1999,20(13):2653-2662.

[5]Yang Hang,Zhang Xia,Shuai Tong,et al.Comparision of FLAASH and Empirical Line Approach for Atmospheric Correction of OMIS-II Imagery[J].Bulletin of Surveying and Mapping,2010,(8):4-6,10.[杨杭,张霞,帅通,等.OMIS-Ⅱ图像大气校正之FLAASH法与经验线性法的比较[J].测绘通报,2010,(8):4-6,10.]

[6]Hadjimitsis D,Clayton C,Hope V.An Assessment of the Effectiveness of Atmospheric Correction Algorithms through the Remote Sensing of Some Reservoirs[J].International Journal of Remote Sensing,2004,25(18):3651-3674.

[7]Song C,Woodcock C E,Seto K C,et al.Classification and Change Detection Using Landsat TM Data:When and How to Correct Atmospheric Effects?[J].Remote Sensing of Environment,2001,75(2):230-244.

[8]Fan Weiliang,Du Huaqiang,Zhou Guomo,et al.Effects of Atmospheric Calibration on Remote Sensing Estimation of Moso Bamboo Forest Biomass[J].Chinese Journal of Applied Ecology,2010,(1) :1- 8.[范渭亮,杜华强,周国模,等.大气校正对毛竹林生物量遥感估算的影响[J].应用生态学报,2010,(1):1-8.]

[9]Cooley T,Anderson G,Felde G,et al.FLAASH:a MODTRAN4-based Atmospheric Correction Algorithm,Its Application and Validation[C]//2002 IEEE International Geoscience and Remote Sensing Symposium,IGARSS02,2002,(3):1414-1418.

[10]Adler-Golden S,Berk A,Bernstein L,et al.FLAASH,A MODTRAN4 Atmospheric Correction Package for Hyperspectral Data Retrievals and Simulations[C]//Proc 7th Ann JPL Airborne Earth Science Workshop,1998.

[11]Song Xiaoyu,Wang Jihua,Liu Liangyun,et al.Atmospheric Correction of Hyper-spectral Imagery:Evaluation of the FLAASH Algorithm with AVRIS Data[J].Remote Sensing Technology and Application,2005,(4):393-398.[宋晓宇,王纪华,刘良云,等.基于高光谱遥感影像的大气纠正:用AVIRIS数据评价大气纠正模块FLAASH[J].遥感技术与应用,2005,(4):393-398.]

[12]Deng Shubin.Processing Methods of Remote Sensing Image in ENVI[M].Beijing:Science Press,2010.[邓书斌.ENVI 遥感图像处理方法[M].北京:科学出版社,2010.]

[13]Matthew M W,Adler-Golden S M,Berk A,et al.Editors.Atmospheric Correction of Spectral Imagery:Evaluation of the FLAASH Algorithm with AVIRIS Data[C]//Proceedings 31st Applied Imagery Pattern Recognition Workshop,2002:157-163.

[14]Anderson G P,Felde G W,Hoke M L,et al.MODTRAN4-based Atmospheric Correction Algorithm:FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes)[C]//AeroSense 2002:International Society for Optics and Photonics,2002:65-71.

[15]Chander G,Markham B L,Helder D L.Summary of Current Radiometric Calibration Coefficients for Landsat MSS,TM,ETM+,and EO-1 ALI Sensors[J].Remote Sensing of Environment,2009,113(5):893-903.

[16]Liu Yuqin,Sha Jinming,Xu Saiping,et al.Atmospheric Correction and Evaluation for HIS Hyperspectral Image based on FLAASH Model[J].Journal of Fujian Normal University(Natural Science Edition),2013,(5):30-35.[刘玉琴,沙晋明,徐赛萍等.HIS高光谱数据的FLAASH大气校正与评价[J].福建师范大学学报(自然科学版),2013,(5):30-35.]

[17]Luo Cailian,Chen Jie,Yue Tongchao.Atmospheric Correction on Landsat ETM+ Satellite Image based on FLAASH Model[J].Protection Forest Science and Technology,2008,(5):46-48,51.[罗彩莲,陈杰,乐通潮.基于FLAASH模型的Landsat ETM+卫星影像大气校正[J].防护林科技,2008,(5):46-48,51.]

[18]Liu Yu.Atmospheric Correction on MODIS1B Satellite Image based on FLAASH Model[J].Geomatics &Spatial Information Technology,2013,(3):47-49.[刘瑜.基于FLAASH模型的MODIS1B数据的大气校正[J].测绘与空间地理信息,2013,(3):47-49.]

[1] 邢晓达,申茜,李俊生,张方方,庞治国,吕书强. 基于HJ-CCD的漫湾坝区河流悬浮物浓度遥感反演[J]. 遥感技术与应用, 2016, 31(4): 682-690.
[2] 刘吉凯,钟仕全,梁文海. 基于多时相Landsat8 OLI影像的作物种植结构提取[J]. 遥感技术与应用, 2015, 30(4): 775-783.
[3] 吴岩真,闻建光,王佐成,唐勇,窦宝成. 遥感影像地形与大气校正系统设计与实现[J]. 遥感技术与应用, 2015, 30(1): 106-114.
[4] 陈浩,麻金继,王传辉. 利用多元遥感数据进行CBERS-02卫星大气校正研究[J]. 遥感技术与应用, 2014, 29(6): 1020-1026.
[5] 胡勇,刘良云,张九星,李绪志. 基于MODIS大气产品的天宫一号高光谱成像仪数据大气校正研究[J]. 遥感技术与应用, 2014, 29(6): 1060-1066.
[6] 马yan,李正强,李浩. 卫星影像大气校正中气溶胶模型的影响分析—以天津地区为例[J]. 遥感技术与应用, 2014, 29(3): 410-418.
[7] 崔喜爱,曾琪明,童庆禧,焦健,梁存任. 重轨星载InSAR测量中的大气校正方法综述[J]. 遥感技术与应用, 2014, 29(1): 9-17.
[8] 娄明静,邢前国,施平. 海岸带高光谱遥感与近海高光谱成像仪(HICO)[J]. 遥感技术与应用, 2013, 28(4): 627-632.
[9] 王嘉楠,叶勤,林怡. 不同大气校正方法对中小湖泊蓝藻遥感动态监测的影响[J]. 遥感技术与应用, 2013, 28(1): 157-164.
[10] 石锋,沙晋明,张友水,刘霞. 基于高程分层方法的HJ-1B CCD2影像大气校正[J]. 遥感技术与应用, 2011, 26(6): 775-781.
[11] 王正海,段建军,耿欣. 基于波谱匹配的Hyperion数据大气校正方法对比研究[J]. 遥感技术与应用, 2011, 26(4): 432-436.
[12] 李传荣, 贾媛媛, 马灵玲. 干涉成像光谱遥感技术发展与应用[J]. 遥感技术与应用, 2010, 25(4): 451-457.
[13] 马灵玲, 王新鸿, 唐伶俐. HJ-1A高光谱数据高效大气校正及应用潜力初探[J]. 遥感技术与应用, 2010, 25(4): 525-531.
[14] 杨静学,王云鹏,杨勇. 基于高程或气溶胶厚度与6S模型校正参数回归方程的遥感图像大气校正模型[J]. 遥感技术与应用, 2009, 24(3): 331-340.
[15] 丁凤. 一种基于遥感数据快速提取水体信息的新方法[J]. 遥感技术与应用, 2009, 24(2): 167-171.