Please wait a minute...
img

官方微信

遥感技术与应用  2014, Vol. 29 Issue (2): 212-218    DOI: 10.11873j.issn.1004-0323.2014.2.0212
模型与反演     
几种海水微波复介电常数模型的比较和分析
张勇1,2,3,孙强1,吕达仁1
(1.中国科学院大气物理研究所中层大气和全球环境探测重点实验室,北京 100029;
2.中国科学院大学,北京 100049;3.北京应用气象研究所,北京 100029)
Comparison and Analysis of Several models for Microwave Complex Dielectric Constant of Sea Water
Zhang Yong1,2,3,Sun Qiang1,Lv Dare1
(1.Key Laboratory of Middle Atmosphere and Global Enviroment Observation,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;
2.University of Chinese Academy of Sciences,Beijing 100049,China;
3.Beijing Institute of Applied Meteorology Research,Beijing 100029,China)
 全文: PDF(1774 KB)  
摘要:

海水的复介电常数是计算海面发射率的重要输入参数之一。迄今为止,已经发布了许多经典的海水复介电常数计算模型,并被广泛应用在星载微波海洋遥感领域。首先回顾了经典的海水微波复介电常数模型,指出了它们的主要性能特点和彼此之间的差异;接着,使用卫星观测数据以及相匹配的大气海洋环境产品,通过比对模型计算亮温和卫星实测亮温,分析了当前5个海水微波复介电常数模型的计算准确度。结果表明:Fastem5中的海水微波复介电常数模型计算准确度相对较高,运行速度较快。

关键词: 海水复介电常数模型微波    
Abstract:

For a flat ocean surface,the emissivity can be accurately calculated from the Fresnel formula for a given seawater complex dielectric constant and a local incident angle.Consequently,the microwave complex dielectric constant of sea water is an important input parameter for sea surface emissivity.As far,many classic seawater complex dielectric constant models have been released,which are widely applied in spaceborne microwave ocean remote sensing field.Firstly,some classic models and their main characteristics and differences were reviewed.Secondly,using the satellite data and collocated atmospheric and oceanic products,the simulation accuracy of the five classic models was analyzed by comparing calculation and measurement of WindSat brightness temperatures.The results show that the microwave seawater complex dielectric constant model in Fast Emissivity Model-5 has relatively higher calculation accuracy and more faster running speed.

Key words: Seawater complex dielectric constant    Model    Microwave
收稿日期: 2013-03-15 出版日期: 2014-05-14
:  P 714.1  
基金资助:

中国科学院对外合作重点项目(GJHZ1207)。

通讯作者: 吕达仁(1940-),男,江苏常熟人,研究员,中国科学院院士,主要从事大气与地球环境遥感、大气辐射传输、中层大气与日地物理,生态与气候相互作用的探测与理论模式等研究。Email:ludr@mail.iap.ac.cn。   
作者简介: 张勇(1976-),男,湖南湘潭人,博士研究生,工程师,主要从事卫星大气和海洋遥感研究。Email:yongzhang@mail.iap.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张勇
孙强
吕达仁

引用本文:

张勇,孙强,吕达仁. 几种海水微波复介电常数模型的比较和分析[J]. 遥感技术与应用, 2014, 29(2): 212-218.

Zhang Yong,Sun Qiang,Lv Dare. Comparison and Analysis of Several models for Microwave Complex Dielectric Constant of Sea Water. Remote Sensing Technology and Application, 2014, 29(2): 212-218.

链接本文:

http://www.rsta.ac.cn/CN/10.11873j.issn.1004-0323.2014.2.0212        http://www.rsta.ac.cn/CN/Y2014/V29/I2/212

[1]Debye P.Polar Molecules[M].New York:Reinhold,1929.

[2]Barthel J,Bachhuber K,Buchner R,et al.A Computer-controlled System of Transmission Lines for the Determination of the Complex Permittivity of Lossy Liquids between 8.5 and 90 GHz[J].Berichte der Bunsengesellschaft für Physikalische Chemie,1991,95(8):853-859.

[3]Klein L A,Swift C T.An Improved Model for the Dielectric Constant of Sea Water at Microwave Frequencies[J].IEEE Transactions on Antennas and Propagation,1977,AP-25(1):104-111.[4]Guillou C,Ellison W J,Eymard L,et al.Impact of New Permittivity Measurements on Sea-surface Emissivity Modelling in Microwaves[J].Radio Science,1998,33(3):649-667.

[5]Ellison W J,Balana A,Delbos G,et al.New Permittivity Mea-surements of Seawater[J].Radio Science,1998,33(3):639-648.

[6]Ellison W J,English S J,Lamkaouchi K,et al.A Comparison of Ocean Emissivity Models Using the Advanced Microwave Sounding Unit,the Special Sensor Microwave Imager,the TRMM Microwave Imager,and Airborne Radiometer Observations[J].Journal of Geophysical Research,2003,108(D21):4663.

[7]Wentz F J,Meissner T.AMSR Ocean Algorithm,Version 2,Algorithm Theoretical Basis Document[R].Remote Sensing System,Santa Rosa,CA,RSS Technical Report.121599A-1,2000.[8]Meissner T,Wentz F J.The Complex Dielectric Constant of Pure and Sea Water from Microwave Satellite Observations[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(9):1836-1849.

[9]Liu Q H,Weng F Z,English S J.An Improved Fast Microwave Water Emissivity Model[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(4):1238-1250.

[10]Meissner T,Wentz F J.The Emissivity of the Ocean Surface between 6 and 90 GHz over a Large Range of Wind Speeds and Earth Incidence Angles[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(8):3004-3026.

[11]Gaiser P W,Germain K St,Twarog E M,et al.The WindSat Spaceborne Polarimetric Microwave Radiometer:Sensor Description and Early Orbit Performance[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(11):2347-2361.

[12]Antonov J I,Seidov D,Boyer T P,et al,World Ocean Atlas 2009,Volume 2:Salinity[M].Washington:U.S.Government Printing Office,2010.

[13]Bettenhausen M H,Smith C K,Bevilacqua R M,et al.A Nonlinear Optimization Algorithm for WindSat Wind Vector Retrievals[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(3):597-610.

[1] 杨军,裴剑杰. 一种改进的隐马尔可夫随机场遥感影像分割算法[J]. 遥感技术与应用, 2018, 33(5): 857-865.
[2] 林利斌,鲍艳松,左泉,房世波. 基于Sentinel-1与FY-3C数据反演植被覆盖地表土壤水分[J]. 遥感技术与应用, 2018, 33(4): 750-758.
[3] 马真东,摆玉龙. 基于地理处理服务的地下水脆弱性评价研究[J]. 遥感技术与应用, 2018, 33(4): 759-765.
[4] 康文慧,宋晓谕,李洁,邓晓红,王宏伟,孙栋元. 基于GIS技术的流域生态补偿方案设计[J]. 遥感技术与应用, 2018, 33(4): 766-774.
[5] 丁安心,焦子锑. 基于线性核驱动模型的BRDF模型集成与案例分析[J]. 遥感技术与应用, 2018, 33(3): 545-554.
[6] 姚星辉,尤红建. 多重观测卫星影像的无控区域网平差[J]. 遥感技术与应用, 2018, 33(3): 555-562.
[7] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[8] 侯海艳,侯金,黄春林,王昀琛. 基于人工神经网络和AMSR2多频微波亮温的北疆地区雪深反演[J]. 遥感技术与应用, 2018, 33(2): 241-251.
[9] 牛明慧,陈福春. 基于月球反射的遥感仪器在轨定标方法[J]. 遥感技术与应用, 2018, 33(2): 337-341.
[10] 万玲,尤红建,程跃兵,卢晓军. 合成孔径雷达图像分割研究进展[J]. 遥感技术与应用, 2018, 33(1): 10-24.
[11] 马丽娜,李青,姜苏麟. 地基微波辐射计的亮温观测与模拟数据的一致性分析和云检测[J]. 遥感技术与应用, 2018, 33(1): 68-77.
[12] 白瑜,孟治国,赵凯. 像元尺度土壤水分监测网络及其对L波段土壤水分产品的初步验证结果[J]. 遥感技术与应用, 2018, 33(1): 78-87.
[13] 赵航,陈方, 张美美. 基于改进C-V模型的冰湖轮廓提取方法研究[J]. 遥感技术与应用, 2018, 33(1): 177-184.
[14] 张雅,尹小君,王伟强. 基于Landsat 8 OLI遥感影像的天山北坡草地地上生物量估算[J]. 遥感技术与应用, 2017, 32(6): 1012-1021.
[15] 魏龙,王维真,吴月茹,马春锋. 土壤水盐介电模型对比与分析[J]. 遥感技术与应用, 2017, 32(6): 1022-1030.