Please wait a minute...
img

官方微信

遥感技术与应用  2014, Vol. 29 Issue (2): 278-285    DOI: 10.11873j.issn.1004-0323.2014.2.0278
遥感应用     
物候信息在大范围作物长势遥感监测中的应用
蒙继华,杜鑫,张淼,游行至,吴炳方
(中国科学院遥感与数字地球研究所,北京 100094)
Integrating Crop Phenophase Information in Large-area Crop Condition Evaluation with Remote Sensing
 全文: PDF(4194 KB)  
摘要:

大范围的农作物长势监测可以为农业政策的制订和粮食贸易提供决策依据,也是农作物产量估测的必要前提。遥感估算的作物生物量是评价作物长势的主要群体特征指标,在大范围上开展作物长势监测时,不同区域的作物因为所处的物候阶段不同而导致生物量存在差异,这种差异与因作物长势状况差别而产生的差异混合在一起,增加了长势监测结果的不确定性。以中国河南、山东两省为研究区,以MODIS 250 m NDVI产品数据为主要数据源,结合改进的CASA模型实现了区域内冬小麦生物量的估算,结合冬小麦生长过程特征进行了典型物候期的监测。在此基础上,分析了扬花期前后物候差异对冬小麦生物量估算的影响,研究其特定物候阶段的变化规律,从而实现了生物量的物候归一化,初步探索了如何消除大区域物候差异对作物长势监测与评估的影响。

关键词: 物候遥感作物长势生物量    
Abstract:

Meng Jihua,Du Xin,Zhang Miao,You Xingzhi,Wu Bingfang
(Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100094,China)
Large-area crop condition information is not only helpful in producing proper agricultural policy and making sound decision in grain trade,but also a premise for crop production prediction.Crop bio-physical parameters(biomass)derived from remote sensing are the major indicators for crop group condition evaluation.When these parameters are used in large-area crop condition evaluation,the parameter difference due to phenophase difference and that difference due to crop condition are mixed,which is hard to distinguish.This will induce much uncertainty in the large\|area crop condition monitoring with these bio\|physical parameters.Taking Shandong and Henan provinces as study area,this study estimated winter wheat biomass and phenophase with 250 m MODIS data.Then the relationship between phenophase and biomass at certain phonological stage for winter wheat was studied.This relationship was used to normalize the winter wheat biomass to same phonological stage.The elimination of uncertainty due to phenophase difference in crop condition monitoring was explored.

Key words: Phenophase    Remote sensing    Crop condition    Biomass
收稿日期: 2013-02-25 出版日期: 2014-05-14
:  TP 79  
基金资助:

国家自然科学基金项目(41171331,41010118),863计划项目(2013AA12A302),973计划项目(2010CB950900)。

作者简介: 蒙继华(1977-),男,新疆石河子人,研究员,主要从事农情遥感监测及作物参数遥感反演技术研究。Email:mengjh@radi.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蒙继华
杜鑫
张淼
游行至
吴炳方

引用本文:

蒙继华,杜鑫,张淼,游行至,吴炳方. 物候信息在大范围作物长势遥感监测中的应用[J]. 遥感技术与应用, 2014, 29(2): 278-285.

链接本文:

http://www.rsta.ac.cn/CN/Y2014/V29/I2/278

[1]Rao M V K,Ayyangar R S,Rao P P N.Role of Multispectral Data in Assessing Crop Management and Crop Yield[C]//Machine Processing of Remote Sensed Data Symposium.Indiana,USA.1982:1103-1112.

[2]Yang Bangjie,Pei Zhiyuan.Definition of Crop Condition and Crop Monitoring Using Remote Sensing[J].Transactions of the Chinese Society of Agricultural Engineering,1999,15(3):214-218.[杨邦杰,裴志远.农作物长势的定义与遥感监测[J].农业工程学报,1999,15(3):214-218.]

[3]Wu Bingfang,Meng Jihua,Li Qiangzi.Review of Overseas Crop Monitoring Systems with Remote Sensing[J].Advances in Earth Science,2010,25(10):1003-1012.[吴炳方,蒙继华,李强子.国外农情遥感监测系统现状与启示[J].地球科学进展,2010,25(10):1003-1012.]

[4]Wu Bingfang,Meng Jihua,Li Qiangzi,et al.Latest Development of “CropWatch”——An Global Crop Monitoring System with Remote Sensing[J].Advances in Earth Science,2010,25(10):1013-1022.[吴炳方,蒙继华,李强子,等.“全球农情遥感速报系统(CropWatch)”新进展[J].地球科学进展,2010,25(10):1013-1022.]

[5]Shi Dingshan,Mao Liuxi.A Research on the Method of NOAA/ AVHRR Monitor of Remote Sensing the Growing Tendency of Winter Wheat[J].Meteorologica Sinica,1992,50(4):520-523.[史定珊,毛留喜.NOAA/AVHRR冬小麦苗情长势遥感动态监测方法研究[J].气象学报,1992,50(4):520-523.]

[6]Liu Kequn,Zhang Xiaoyang,Huang Jinliang.Study on Monitor of Rice Growing and Rice Yield Estimation by Remote Sensing in Jianghan Plain[J].Journal of Central China Normal University(Natural Sciences),1997,31(4):482-487.[刘可群,张晓阳,黄进良.江汉平原水稻长势遥感监测及估产模型[J].华中师范大学学报(自然科学版),1997,31(4):482-487.]

[7]Wu Bingfang,Zhang Feng,Liu Chenglin,et al.An Integrated Method for Crop Condition Monitoring[J].Journal of Remote Sensing,2004,8(6):498-514.[吴炳方,张峰,刘成林,等.农作物长势综合遥感监测方法[J].遥感学报,2004,8(6):498-514.]

[8]Wu Jianjun,Yang Qinye.Crop Monitoring and Yield Estimation Using Synthetic Methods in Arid Land[J].Geographical Research,2002,21(5):593-598.[武建军,杨勤业.干旱区农作物长势综合监测[J].地理研究,2002,21(5):593-598.]

[9]Liu Aixia,Wang Changyao,Liu Zhengjun,et al.Cotton Information Extraction and Growth Monitoring in Arid Area based on RS and GIS[J].Geography and Geo-information Science,2003,19(4):101-104.[刘爱霞,王长耀,刘正军,等.基于RS与GIS的干旱区棉花信息提取及长势监测[J].地理与地理信息科学,2003,19(4):101-104.][10]Zhang Feng,Wu Bingfang,Liu Chenglin,et al.A Method to Extract Regional Crop Growth Profile with Time Series of NDVI Data[J].Journal of Remote Sensing,2004,8(6):515-528.[张峰,吴炳方,刘成林,等.区域作物生长过程的遥感提取方法[J].遥感学报,2004,8(6):515-528.]

[11]Jiang Dong,Wang Naibin,Yang Xiaohuan,et al.Principles of the Interaction between NDVI Profile and the Growing Situation of Crops[J].Acta Ecologica Sinica,2002,22(2):247-252.[江东,王乃斌,杨小唤,等.NDVI曲线与农作物长势的时序互动规律[J].生态学报,2002,22(2):247-252.]

[12]Meng Jihua,Wu Bingfang.Study on the Crop Condition Monitoring Methods with Remote Sensing[C]//The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences.Vol.XXXVII.Part B8.Beijing 2008:945-950.

[13]Groten S M E.NDVI-Crop Monitoring and Early Yield Assessment of Burkina Faso[J].International Journal of Remote Sensing,1993,14(8):1495-1515.

[14]Meng Jihua,Wu Bingfang.The Feasibility Analysis on Satellite Data based Crop Mature Data Prediction[J].Remote Sensing Technology and Application,2013,28(2):165-173.[蒙继华,吴炳方.基于卫星遥感预测作物成熟期的可行性分析[J].遥感技术与应用,2013,28(2):165-173.]

[15]Li Weiguo,Zhao Chunjiang,Wang Jihua,et al.Research Situation and Prospects of Wheat Condition Monitoring based on Growth Model and Remote Sensing[J].Remote Sensing for Land & Resources,2007,(2):6-9.[李卫国,赵春江,王纪华,等.遥感和生长模型相结合的小麦长势监测研究现状与展望[J].国土资源遥感,2007,(2):6-9.]

[16]Wang Jihua,Zhao Chunjiang,Huang Wenjiang,et al.Effect of Soil Water Content on the Wheat Leaf Water Content and the Physiological Function[J].Acta Tritical Crops,2001,(4):47-52.[王纪华,赵春江,黄文江,等.土壤水分对小麦叶片含水量及生理功能的影响[J].麦类作物学报,2001,(4):47-52.]

[17]Field C B,Randerson J T,Malmstrom C M.Global Net Primary Production:Combining Ecology and Remote Sensing[J].Remote Sensing of Environment,1995,51(1):74-88.

[18]Potter C S,Randerson J T,Field C B,et al.Terrestrial Ecosystem Production:A Process Model based on Global Satellite and Surface Data[J].Global Biogeochemical Cycles,1993,7(4):811-841.

[19]Yan H,Liu J,Huang H Q,et al.Assessing the Consequence of Land Use Change on Agricultural Productivity in China[J].Global and Planetary Change,2009,67(1-2):13-19.

[20]Cui Kai,Meng Jihua,Zuo Tingying.Monitoring of Crop Phenology with Remote Sensing[J].Journal of Anhui Agricultural Sciences,2012,40(10):6279-6281,6321.[崔凯,蒙继华,左廷英.遥感作物物候监测方法研究[J].安徽农业科学,2012,40(10):6279-6281,6321.]

[21]Chen J,Jonsson P,Tamura M,et al.A Simple Method for Reconstructing a High-quality NDVI Time-series Data Set based on the Savitzky-Golay Filter[J].Remote Sensing of Environment,2004,91:332-344.

[22]Meng Jihua,Wu Bingfang,Li Qiangzi,et al.Monitoring Crop Phenology with MERIS Data-a Case Study of Winter Wheat in North China Plain[C]//Progress in Electromagnetics Research Symposium,Beijing,China,March 2009.

[23]Wu Bingfang.China Crop Watch System with Remote Sensing[J].Journal of Remote Sensing,2004,8(6):482-496.[吴炳方.中国农情遥感速报系统[J].遥感学报,2004,8(6):482-496.]

[24]Wardlow B D,Egbert S L,Kastens J H.Analysis of Time-Series MODIS 250 m Vegetation Index Data for Crop Classification in the U.S.Central Great Plains[J].Remote Sensing of Environment,2007,108:290-310.

[25]Meng Jihua,Wu Bingfang,Du Xin,et al.Method to Construct High Spatial and Temporal Resolution NDVI DataSet-STAVFM[J].Journal of Remote Sensing,2011,15(1):52-59.[蒙继华,吴炳方,杜鑫,等.高时空分辨率NDVI数据集构建方法[J].遥感学报,2011,15(1):52-59.]


 

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[5] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[6] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[7] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[8] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[9] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[10] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[11] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[12] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.
[13] 周玉科,刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3): 486-498.
[14] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[15] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.