Please wait a minute...
img

官方微信

遥感技术与应用  2014, Vol. 29 Issue (2): 344-351    DOI: 10.11873j.issn.1004-0323.2014.2.0344
图像与数据处理     
结合地籍数据的高密度城区面向对象遥感分类 
余其鹏,张晓祥,梅丹丹,徐盼
(河海大学地理信息科学与工程研究所,江苏 南京 210098)
High-resolution Remote Sensing Classification Aided by the Auxiliary Data in High\|density Urban Area
Yu Qipeng,Zhang Xiaoxiang,Mei Dandan,Xu Pan
( Institute of Geographical Information Science and Engineering,Hohai University,Nanjing 210098,China)
 全文: PDF(6540 KB)  
摘要:

利用高分辨率遥感影像和GIS辅助数据,对高密度城区进行面向对象的土地利用覆被分类研究。使用NAIP高分辨率航空遥感影像,在多尺度影像分割的基础上,针对特定地物选择合适的影像分割参数。采用决策树方法建立高密度城市地区的分类规则,并结合该地区地籍图数据作为辅助数据,逐步进行高密度城市地区地物信息提取。利用辅助数据进行面向对象的遥感分类效果优于单纯依靠遥感影像进行的分类,且有效提取了道路和复杂的房屋等信息,得到了理想的分类结果,其总分类精度从常规面向对象方法的84.08%提高到89.79%。利用辅助数据进行遥感分类提高了高分辨率遥感影像的分类精度,说明了利用辅助数据进行遥感分类方法的有效性。

关键词: 高分辨率遥感影像分割影像分类面向对象辅助数据    
Abstract:

High-resolution remote sensing images and GIS ancillary datasets such as parcels are combined to perform land use/cover change mapping in the urban\|built areas.NAIP datasets,a novel high\|resolution aerial remote sensing images in The National Agriculture Imagery Program,are used in these works.After trial and error image segmentation pursuing for good processing results,an objcet\|oriented image classification framework based on decision tree rules,combined with the cadastral datasets as a secondary data,was built to improve high\|resolution remote sensing image classification on the high\|density urban areas.The classification accuracy  of object\|oriented remote sensing image classification combined with geographic auxiliary data are better than only using the remote sensing images.Experiments studies showed that roads,building and others are excellently extracted.Comparing with the conventional object\|oriented classification,the overall classification accuracy of this novel methodology increased from 84.08% to 89.79%.Such a result reveals that auxiliary data can effectively improve the accuracy of high\|resolution remote sensing image classification.

Key words: High resolution remote sensing    Image segmentation    Image classification    Object-oriented    Ancillary data
收稿日期: 2013-04-01 出版日期: 2014-05-14
:  TP 79  
基金资助:

余其鹏(1987-),男,安徽宣城人,硕士研究生,主要从事地理信息系统和遥感研究。Email:yuqipeng@x\|gis.com.cn。
张晓祥(1979-),男,江苏南通人,博士,副教授,主要从事空间分析与建模、资源环境遥感研究。Email:xiaoxiang@hhu.edu.cn。

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
余其鹏
张晓祥
梅丹丹
徐盼

引用本文:

余其鹏,张晓祥,梅丹丹,徐盼. 结合地籍数据的高密度城区面向对象遥感分类 [J]. 遥感技术与应用, 2014, 29(2): 344-351.

Yu Qipeng,Zhang Xiaoxiang,Mei Dandan,Xu Pan. High-resolution Remote Sensing Classification Aided by the Auxiliary Data in High\|density Urban Area. Remote Sensing Technology and Application, 2014, 29(2): 344-351.

链接本文:

http://www.rsta.ac.cn/CN/10.11873j.issn.1004-0323.2014.2.0344        http://www.rsta.ac.cn/CN/Y2014/V29/I2/344

[1]Zhou Chunyan,Wang Ping.Classification of Urban Land ba-sed on Object-oriented Information Extraction Technology[J].Remote Sensing Technology and Application,2008,23(1):31-35.[周春燕,王萍.基于面向对象信息技术提取技术的城市用地分类[J].遥感技术与应用,2008,23(1):31-35.]

[2]Su Wei,Li Jing,Chen Yunhao,et al.Object-oriented Urban Land-cover Classification of Multi-scale Image Segmentation Method——A Case Study in Kuala Lumpur City Center,Malaysia[J].Journal of Remote Sensing,2007,11(4):521-530.[苏伟,李京,陈云浩,等.基于多尺度影像分割的面向对象城市土地覆被分类研究——以马来西亚吉隆坡市城市中心区为例[J].遥感学报,2007,11(4):521-530.]

[3]Su W,Li J M,Chen Y H,et al.Textural and Local Spatial Statistics for the Object-oriented Classification of Urban Areas using High Resolution Imagery[J].International Journal Remote Sensing,2008,29(11):3105-3117.

[4]Turker M,Ozdarici A.Field-based Crop Classification Using SPOT4,SPOT5,IKONOS and QuickBird Imagery for Agricultural Areas:A Comparison Study[J].International Journal of Remote Sensing,2011,32(24):9735-9768.

[5]Mallinis G,Koutsias N,Tsakiri-Strati M,et al.Object-based Classification Using QuickBird Imagery for Delineating Forest Vegetation Polygons in a Mediterranean Test Site[J].ISPRS Journal of Photogrammetry and Remote Sensing,2008,63(2):237-250.

[6]Su W,Zhang C.Object Oriented Implementation Monitoring Method of Zone Feature in Land Consolidation Engineering Using SPOT 5 Imagery[J].WSEAS Transactions on Computers,2008,7(7):847-856.

[7]Cao Bao,Qin Qiming,Ma Haijian,et al.Application of Object-oriented Approach to SPOT5 Image Classification:A Case Study in Haidian District Beijing City[J].Geography and Geo-Information Science,2006,22(2):46-54.[曹宝,秦其明,马海建,等.面向对象方法在SPOT5遥感图像分类中的应用——以北京市海淀区为例[J].地理与地理信息科学,2006,22(2):46-54.]

[8]Van Lier O R,Fournier R A,Bradley R L,et al.A Multi-resolution Satellite Imagery Approach for Large Area Mapping of Ericaceous Shrubs in Northern Quebec,Canada[J].International Journal of Applied Earth Observation and Geoinformation,2009,11(5):334-343.

[9]Rahman M R,Saha S K.Multi-resolution Segmentation for Object-based Classification and Accuracy Assessment of Land Use/Land Cover Classification Using Remotely Sensed Data[J].Journal of the Indian Society of Remote Sensing,2008,36(2):189-201.

[10]Emerson C W,Lam N S,Quattrochi D A.A Comparison of Local Variance,Fractal Dimension,and Morans I as Aids to Multi-spectral Image Classification[J].International Journal of Remote Sensing,2005,26:1575-1588.

[11]Sun Z P,Shen W M,Wei B,et al.Object-oriented Land Cover Classification Using HJ-1 Remote Sensing Imagery[J].Science China(Earth Sciences),2010,53(S1):34-44.

[12]Lu D,Weng Q.A Survey of Image Classification Methods and Techniques for Improving Classification Performance[J].International Journal of Remote Sensing,2007,28(5):823-870.[13]Niu Chunying,Jiang Wanshou,Huang Xianfeng,et al.Analysis and Comparison between Two Object-oriented Information Extraction Software of Feature Analyst and eCognition[J].Remote Sensing Information,2007,(2):66-69.[牛春盈,江万寿,黄先锋,等.面向对象影像信息提取软件Feature Analyst和eCognition的分析和比较[J].遥感信息,2007,(2):66-69.]

[14]Definiens Imaging.eCognition Developer 8.7 Reference Book[EB/OL].http://www.ecognition.com,2012.

[15]Liu R,Wang S X,Zhou Y,et al.Improved Multi-scale Segmentation Algorithm for High Spatial Resolution Remote Sensing Images[J].Key Engineering Materials,2012,500:780-784.

[16]Hou Yuting,Wang Shugong,Nan Zhuotong.A Rule-based Land Cover Classification Method for the Heihe River Basin[J].Acta Geographica Sinica,2006,31(4):316-320.[侯玉婷,王书功,南卓铜.基于知识规则的土地/土地覆被分类方法——以黑河流域为例[J].地理学报,2011,66(4):549-560.]

[17]Chen Yunhao,Feng Tong,Shi Peijun,et al.Classification of Remote Sensing Image based on Object Oriented and Class Rules[J].Geomatics and Information Science of Wuhan University,2006,31(4):316-320.[陈云浩,冯通,史培军,等.基于面向对象和规则的遥感影像分类研究[J].武汉大学学报(信息科学版),2006,31(4):316-320.]

[18]Rodrigo L,Victor H.On the Use of Ancillary Data by Applying the Concepts of the Theory of Evidence to Remote Sensing Digital Image Classification[J].International Journal of Remote Sensing,2010,31(12):3211-3221.

[19]Hellwich O,Wiedemann C.Object Extraction from High-resolution Multi-sensor Image Data[C]//The 3rd International Conference on Fusion of Earth Data.France:Sophia Antipolis,SEEGreCA,Nice,2000,1:26-28,105-115.

[20]Hutchinson C F.Techniques for Combining Landsat and Ancillary Data for Digital Classification Improvement[J].Photogrammetric Engineering and Remote Sensing,1982,48:123-130.

[21]Harris P M,Ventura S J.The Integration of Geographic Data with Remotely Sensed Imagery to Improve Classification in an Urban Area[J].Photogrammetric Engineering and Remote Sensing,1995,61:993-998.

[22]Li L Q,Zhang J,Wang T.Study on the Method of Extracting Overpass from the High Resolution Remote Sensing Image with the Auxiliary Data-DEM[C]//Image and Data Fusion (ISIDF),2011 International Symposium on,2011:1-4.

[23]Rozenstein O,Karnieli A.Comparison of Methods for Land-use Classification Incorporating Remote Sensing and GIS Inputs[J].Applied Geography,2011,31(2):533-544.

[24]Wentz E A,Stefanov W L,Gries C,et al.Land Use and Land Cover Mapping from Diverse Data Sources for an Arid Urban Environments[J].Computers,Environment and Urban Systems,2006,30(3):320-346.

[25]Qiao Cheng,Luo Jiancheng,Wu Quanyuan,et al.Object-oriented Method based Urban Building Extraction from High Resolution Remote Sensing Image[J].Geography and Geo-Information Science,2008,24(5):36-39.[乔程,骆剑承,吴泉源,等.面向对象的高分辨率影像城市建筑物提取[J].地理与地理信息科学,2008,24(5):36-39.]


 

[1] 闫鹏飞,明冬萍. 尺度自适应的高分辨率遥感影像分水岭分割方法[J]. 遥感技术与应用, 2018, 33(2): 321-330.
[2] 江东,陈帅,丁方宇,付晶莹,郝蒙蒙. 基于面向对象的遥感影像分类研究——以河北省柏乡县为例[J]. 遥感技术与应用, 2018, 33(1): 143-150.
[3] 田峰,陈冬花,黄新利,李虎,姚国慧. 基于形态学阴影指数的高分二号影像建筑物高度估计#br#[J]. 遥感技术与应用, 2017, 32(5): 844-850.
[4] 林齐根,邹振华,祝瑛琦,王瑛. 基于光谱、空间和形态特征的面向对象滑坡识别[J]. 遥感技术与应用, 2017, 32(5): 931-937.
[5] 姬忠林,张月平,李乔玄,刘绍贵,李淑娟,任红艳. 基于GF-1影像的冬小麦和油菜种植信息提取[J]. 遥感技术与应用, 2017, 32(4): 760-765.
[6] 王苏芸,孙中昶,郭华东,申维. 基于面向对象的东营市城乡建设用地信息提取[J]. 遥感技术与应用, 2017, 32(4): 780-786.
[7] 施佩荣,陈永富,刘华,吴云华,魏新,钟泽兵. 基于改进的面向对象遥感影像分类方法研究—以西藏米林县典型林区为例[J]. 遥感技术与应用, 2017, 32(3): 466-474.
[8] 姜萍,刘修国,陈启浩,邵芳芳. 利用多尺度SVM-CRF模型的极化SAR图像建筑物提取[J]. 遥感技术与应用, 2017, 32(3): 475-482.
[9] 朱钟正,陈玉福,朱文泉,郑周涛. 适用于多目标遥感自动解译的最佳专题指数筛选[J]. 遥感技术与应用, 2017, 32(3): 564-574.
[10] 郝泷,陈永富,刘华,朱雪林,达哇扎西,李伟娜. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用, 2017, 32(2): 386-394.
[11] 曹云刚,王志盼,杨磊. 高分辨率遥感影像道路提取方法研究进展[J]. 遥感技术与应用, 2017, 32(1): 20-26.
[12] 朱济帅,尹作霞,谭琨,王雪,李二珠,杜培军. 基于空间邻域信息的高光谱遥感影像半监督协同训练[J]. 遥感技术与应用, 2016, 31(6): 1122-1130.
[13] 邓滢,张红,王超,刘萌. 结合纹理与极化分解的面向对象极化SAR水体提取方法[J]. 遥感技术与应用, 2016, 31(4): 714-723.
[14] 鲍蕊,夏俊士,薛朝辉,杜培军,车美琴. 基于形态学属性剖面的高光谱影像集成分类[J]. 遥感技术与应用, 2016, 31(4): 731-738.
[15] 王娟,廖静娟,沈国状,许涛. 基于面向对象技术的鄱阳湖湿地地物分类研究[J]. 遥感技术与应用, 2016, 31(3): 543-550.