Please wait a minute...
img

官方微信

遥感技术与应用  2008, Vol. 23 Issue (1): 17-23    DOI: 10.11873/j.issn.1004-0323.2008.1.17
研究与应用     
应用高分辨率遥感影像提取作物种植面积
徐新刚1, 2,李强子1,周万村3,吴炳方1
(1.中国科学院遥感应用研究所,北京 100101;2.国家农业信息化工程技术研究中心,北京 100097;
3.中国科学院山地灾害与环境研究所,四川成都 610041)
Classification Application of QuickBird Imagery to Obtain Crop Planting Area
XU Xin-gang1,2,LI Qiang-zi1,ZHOU Wan-cun3,WU Bing-fang1
(1.Institute of Remote Sensing Applications,Chinese Academy of Sciences, Beijing100101, China;
2. NationalEngineering Research Center for Information Technology in Agriculture, Beijing100097, China;
3. Instituteof Mountain Hazards and Environment, ChineseAcademy of Sciences, Chengdu610041, China)
 全文: PDF(1577 KB)  
摘要:

利用中低分辨率遥感影像提取作物分类种植面积的精度,往往难以满足农业遥感估产的需要。随着新型传感器的不断出现,应用高分辨率遥感影像高精度地提取作物分类面积日益成为发展趋势。由于高分辨率遥感影像提供的地物纹理、色调与形状等信息更加丰富,当前基于对象的地物识别分类方法仍不成熟,处理操作中人为干预过多,而且较为复杂,因此尝试以地面调查信息为辅助参量,采用常规基于像元的最大似然法监督分类方法,依据多尺度遥感影像信息提取的原理,分阶段地逐步提取作物种植面积,以此为农业遥感估产服务。

关键词: 作物分类QuickBird遥感影像地面调查最大似然法多尺度    
Abstract:

With complicated natural conditions, multiplicity of crop structure, small and dispersive distribution of parcel, the accuracy of images with moderate and lower resolution can't meet the acquisition of crop yield forecasting. With improvement of new sensors of high resolution, remote sensing imagery of high resolution can provide more abundant information such as texture, hue and so on. However, the current object-oriented classification approaches are not mature, which have too much thresholds to be set and more complicated and difficult to be used commonly. Therefore, combining QuickBird high spatial resolution satellite imagery with the field investigation data as mainly auxiliary information as well as using the pixel-oriented maximum likelihood method, crop planting area was obtained step by step, applying the principle of multi-scale information extraction,a test was set in Mianyang, Sichuan province.The result shows that the accuracy of crop classification is fairly exciting.

Key words: Crop classification    QuickBird    Field investigation    Maximum likelihood method    Multi-scale
收稿日期: 2007-01-22 出版日期: 2011-10-24
:  TP 79   
基金资助:

国家863项目:粮食预警遥感辅助决策系统(2003AA131050);中国科学院知识创新工程重要方向项目:遥感估产运行系统中遥感监测过程检验与精度评估(KZCX3-SW-338-2)。

作者简介: 徐新刚(1976-),男,博士研究生,主要从事农业与生态环境遥感研究。E-mail:xxg_xin_gang@126.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

徐新刚,李强子,周万村,吴炳方. 应用高分辨率遥感影像提取作物种植面积[J]. 遥感技术与应用, 2008, 23(1): 17-23.

XU Xin-gang,LI Qiang-zi,ZHOU Wan-cun,WU Bing-fang. Classification Application of QuickBird Imagery to Obtain Crop Planting Area. Remote Sensing Technology and Application, 2008, 23(1): 17-23.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2008.1.17        http://www.rsta.ac.cn/CN/Y2008/V23/I1/17

[1] Anne H,Anil K.A Marlkov Random Field Model for Classification of Multisource Satellite Imagery [J]. IEEE Transactions on Geoscience and Remote Sensing,1996,34(1):100-113.
[2] Pax-Lenney M, Woodcock C E. The Effect of Spatial Resolution on the Ability to Monitor the Status of Agricultural Lands  [J].Remote Sensing of Environment,1997,61(2):210-220.
[3] Uchida H. Discrimination of Agricultural Land Use Using Multi-temporal NDVI Data [A]. Proceedings of the 22nd Asian Conference on Remote Sensing [C].2001,2:813-818,Singapore.
[4] Turner M D,Congalton R G.Classification of Multi-temporal SPOT-XS Satellite Data for Mapping Rice Fields on a West African Floodplain[J].Int.J.Remote Sensing,1998,19(1),21-41.
[5] Okamoto K,Kawashima H.Estimation of Rice-land Planted Area in the Tropical Zone Using a Combination of Optical and Microwave Satellite Sensor Data [J].International Journal of Remote Sensing,1999,20(5):1045-1048.
[6] McNairn H,Ellis J,Van Der Sanden J J,etal. Providing Crop Information Using RADARSAT-1 and Satellite Optical Imagery [J].Int.J.Remote Sensing,2002,23(5):851-870.
[7] Wu B F.Operational Remote Sensing Methods for Agricultural Statistics  [J].Acta Geographica Sinica,2000,55(1):25-35.[吴炳方.全国农情监测与估产的运行化遥感方法[J].地理学报,2000,55(1):23-35.]
[8] Jiang D,Wang N B,Yang X H.Study on Forecasting of Crop Yield Using Satellite Remote Sensing in China  [J]. Ziran Zazhi,1999,21(6):351-355.[江东,王乃斌,杨小唤.我国粮食作物卫星遥感估产的研究[J].自然杂志,1999,21(6):351-355.]
[9] Yang B X.Characteristics and Main Specifications of IKONOS and QuckBird 2 Satellite Camera———Some Points for Developing Such Like Satellite Camera [J].Spacecraft Recover &Remote Sensing,2002,12:14-16.[杨秉新.美国IKONOS和QuickBird 2卫星相机的主要性能和特点分析及看法[J].航天返回与遥感,2002,23(4):14-16.]
[10] Zhu G L.Study on the Progress and Application of High Resolution Remote Sensing Technology [J].Geo-information Science,2004,6(3):108-110.[朱光良.IKONOS等高分辨率遥感技术的发展与应用分析[J].地球信息科学,2004,6(3):108-110.]
[11] Wu B F,Xu W B,Sun M,et.al. QuickBird Imagery for Crop Pattern Mapping [J].Journal of Remote Sensing,2004,8(6):688-695.[吴炳方,许文波,孙明,等.高精度作物分布图制作[J].遥感学报,2004,8(6):688-695.]
[12] Sun D F,Yang J H,Liu S X.Application of High Spatial Remote Sensing Images in Land Use Classification and Change Monitoring [J].Transactions of the CSAE, 2002,18(2):160-164.[孙丹峰,杨冀红,刘顺喜.高分辨率遥感卫星影像在土地利用分类及其变化监测的应用研究[J].农业工程学报,2002,18(2):160-164.]
[13] Liu L,Steve M.Moonlet and International Disaster Monitoring Constellation [J].Aerospace China, 2004,(6):18-21.[刘路,史蒂芬·麦京.小卫星与国际灾害监测星座[J].中国航天,2004,(6):18-21.]
[14] Xie P L,Guan Z Q,Li D R.Small Satellite and Chinese Small Satellite Plan [J/OL].Sicencepaper Online, http://www.paper.edu.cn.[谢佩玲,关泽群,李德仁.小卫星及中国的小卫星计划[J/OL].中国科技论文在线,http://www.paper.edu.cn.]
[15] Zhao J J,Yin J Y,Shan X J.Segmentation of High-resolution Remote Sensing Image Based on Shape Feature [J].Bulletin of Surveying and Mapping,2005,1:10-13.[赵俊娟,尹京苑,单新建.基于形状特征的高分辨率遥感影像目标分割[J].测绘通报,2005,1:10-13.]
[16] Zhu C Q,Wang Y G,Ma Q H,et al. Road Extraction from High-resolution Remotely Sensed Image Based on Morphological Segmentation[J]. Acta Geodaetica et Cartographica Sinica,2004, 33(4):347-351.[朱长青,王耀革,马秋禾,等.基于形态分割的高分辨率遥感影像道路提取[J].测绘学报,2004,33(4):347-351.]
[17] Ming D P,Luo J C,Zhou C H,et al.Information Extraction from High Resolution Remote Sensing Image and Parcel Unit Extraction Based Features[J].Journal of Data Acquisition &Processing,2005,20(1):34-39. [明冬萍,骆剑承,周成虎,等.高分辨率遥感影像信息提取及块状基元特征提取[J].数据采集与处理,2005,20(1):34-39.]
[18] Han T.Some Research Advances and Methods on Detecting Land Cover Change by Remote Sensing [J].Arid Meteorology,2004,22(2):76-81.[韩涛.遥感监测土地覆盖变化的方法及研究进展[J].干旱气象,2004,22(2):76-81.]
[19] Yang P,Tang H J,Liu J.Progress and Outlook in Automatic Classification Method for Crop Yield Estimation Using Remote Sensing Data [J]. Journal of China Agricultural Resources and Regional Planning,2000,21(6):57-60.[杨鹏,唐华俊,刘佳.作物遥感估产中自动分类方法研究进展与展望[J].中国农业资源与区划,2000,21(6):57-60.]
[20] Wu B F.China Crop Watch System with Remote Sensing [J].Journal of Remote Sensing,2004,8(6):481-497.[吴炳方.中国农情遥感速报系统[J].遥感学报,2004,8(6):481-497.]
[21] Liao W F,Xiao J H,Feng Z M,et al.Research on Technologies of Land Classification Based on Multi-source Remote Sensing Data Fusion[J].Bimonthly of Xinjiang Meteorology,2004,27(4):22-24.[廖文峰,肖继华,冯志敏,等.基于数据融合的土地遥感分类在技术研究[J].新疆气象,2004,27(4):22-24.]

[1] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.
[2] 王宁,陈方,于博. 基于形态学开运算的面向对象滑坡提取方法研究[J]. 遥感技术与应用, 2018, 33(3): 520-529.
[3] 何艺,周小成,黄洪宇,许雪琴. 基于无人机遥感的亚热带森林林分株数提取[J]. 遥感技术与应用, 2018, 33(1): 168-176.
[4] 姜萍,刘修国,陈启浩,邵芳芳. 利用多尺度SVM-CRF模型的极化SAR图像建筑物提取[J]. 遥感技术与应用, 2017, 32(3): 475-482.
[5] 史飞飞,高小红,杨灵玉,何林华,贾伟. 基于HJ-1A高光谱遥感数据的湟水流域典型农作物分类研究[J]. 遥感技术与应用, 2017, 32(2): 206-217.
[6] 费鲜芸,王婷,魏雪丽. 基于多尺度分割的遥感影像滨海湿地分类[J]. 遥感技术与应用, 2015, 30(2): 298-303.
[7] 宋晓阳,姜小三,江东,黄耀欢,万华伟,王昌佐. 基于面向对象的高分影像分类研究[J]. 遥感技术与应用, 2015, 30(1): 99-105.
[8] 许夙晖,慕晓冬,柯冰,王晓日. 基于遥感影像的军事阵地动态监测技术研究[J]. 遥感技术与应用, 2014, 29(3): 511-516.
[9] 刘萌萌,刘亚岚,孙国庆,彭立. 结合纹理特征的SVM样本分层土地覆盖分类[J]. 遥感技术与应用, 2014, 29(2): 315-323.
[10] 林旭,洪峻,孙显,鄢懿. 一种基于自适应背景杂波模型的宽幅SAR图像CFAR舰船检测算法[J]. 遥感技术与应用, 2014, 29(1): 75-81.
[11] 王少伟,张晓祥,杨晓英. 太湖湖滨敏感区的土地利用遥感分类研究[J]. 遥感技术与应用, 2014, 29(1): 114-121.
[12] 丁 一,张 杰,马 毅,江 涛,王 强,单春之. 一种考虑与主要水体距离关系的海岸带湿地遥感分类方法[J]. 遥感技术与应用, 2013, 28(5): 785-790.
[13] 杨宇博,程承旗,董芳,陈东. 基于GeoSOT剖分编码的多尺度空间信息区域包含关系计算方法[J]. 遥感技术与应用, 2013, 28(3): 474-480.
[14] 刘鹏,杜云艳. 基于遥感案例推理的海岸带养殖信息提取[J]. 遥感技术与应用, 2012, 27(6): 857-864.
[15] 刘友山,吕成文,祝凤霞,高 超. 基于PCA和多尺度纹理特征提取的高分辨率遥感影像分类[J]. 遥感技术与应用, 2012, 27(5): 706-711.