Please wait a minute...
img

官方微信

遥感技术与应用  2010, Vol. 25 Issue (5): 719-724    DOI: 10.11873/j.issn.1004-0323.2010.5.719
研究与应用     
从数码照片中快速提取植被覆盖度的方法研究
任杰1,2,3,柏延臣1,2,3,王锦地1,2,3
(1.北京师范大学/中国科学院遥感应用研究所遥感科学国家重点实验室,北京100101;
2.北京师范大学环境遥感与数字城市北京市重点实验室,北京100875;
3.北京师范大学地理学与遥感科学学院,北京100875)
An Efficient Method for Extracting Vegetation Coverage from Digital Photographs
REN Jie1,2,3,BO Yan-chen1,2,3,WANG Jin-di1,2,3
(1.State Key Laboratory of Remote Sensing Science,Jointly Sponsored by Beijing Normal Universityand the Institute of Remote Sensing Applications,Chinese Academy of Sciences,Beijing 100101,China;
2.Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities,Beijing Normal University,Beijing 100875,China;
3.School of Geography,Beijing Normal University,Beijing 100875,China)
 全文: PDF(4595 KB)  
摘要:

植被覆盖度是反映植被基本情况的指标,是农学、生态学等所关心的一个重要参数。获取地表数码照片并进一步提取植被覆盖度已成为一种最具潜力的对植被覆盖度进行地面测量的手段,而如何快速、准确地从数码照片中提取植被覆盖度信息尚缺乏成熟的方法。通过利用NDI法对数码照片的处理,实现了植被覆盖度的快速提取,同时用监督分类法提取相同数码照片的植被覆盖。通过对两种方法及其计算结果进行精度评价和比较表明,用NDI法和监督分类法估计的植被覆盖度都能够达到较高的准确性,结果可信度高,但NDI法要比监督分类法更自动化和快速,在精准农业作业系统等方面极具实用价值。

关键词: NDI监督分类植被覆盖度    
Abstract:

Vegetation coverage is one of the objective indicators that reflecting the basic conditions of vegetation,which is concerned by agriculture and ecology.A most potential and rapid method for measuring the vegetation coverage is to extract it from the digital photo of the land surface.However,there was a lack of mature method to realize this procedure precisely.This paper introduces a method that is imitating NDVI,which is used to process the digital photos and to extract the vegetation coverage rapidly.The accuracy of the proposed method is validated by the supervised classification to calculate the vegetation coverage.The comparison of the results of these two methods indicates that the imitating NDVI results are as good as the supervised classification ones.The imitating NDVI method is more rapid and automatic than supervised classification.This method proposed is valuable to precision agriculture practice.

Key words: Normalized Difference Index(NDI)    Supervised classification    Vegetation coverage
收稿日期: 2009-10-18 出版日期: 2013-10-30
基金资助:

国家863项目“玉米精准作业系统研究与应用”(2006AA10A309);国家863项目“国家统计遥感前沿技术研究与应用示范”(2006AA120108)资助。

 

通讯作者: 柏延臣(1972-),男,副教授,主要从事遥感、GIS和空间分析及其不确定性和尺度问题研究。E-mail:boyc@bnu.edu.cn。   
作者简介: 任杰(1983-),男,硕士研究生,主要研究方向为农业遥感。E-mail:renjie@mail.bnu.edu.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
任杰
柏延臣
王锦地

引用本文:

任杰, 柏延臣, 王锦地. 从数码照片中快速提取植被覆盖度的方法研究[J]. 遥感技术与应用, 2010, 25(5): 719-724.

REN Jie, BAI Yan-Chen, WANG Jin-Di. An Efficient Method for Extracting Vegetation Coverage from Digital Photographs. Remote Sensing Technology and Application, 2010, 25(5): 719-724.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2010.5.719        http://www.rsta.ac.cn/CN/Y2010/V25/I5/719

[1]Zhao Yingshi.Principle and Methods for Remote Sensing Application and Analysis[M].Beijing:Science Press,2003.[赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.]
[2]Qin Wei.Review of Vegetation Covering and Its Measuring and Calculating Method[J].Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition),2006,34(9):163-170.[秦伟.植被覆盖度及其测算方法研究进展[J].西北农林科技大学学报,2006,34(9):163-170.]
[3]Sellers P J.A Global 1° by 1° NDVI Data Set for Climate Studies.Part 2:The Generation of Global Fields of Terrestrial Biophysical Parameters from the NDVI[J].International Journal of Remote Sensing,1994,15(17):3519-3545.
[4]North P R J.Estimation of fAPAR,LAI,and Vegetation Fractional Cover from ATSR-2 Imagery[J].Remote Sensing of Environment,2002,80(1):114-121.
[5]Gillies R R.A Verification of the Triangle Method for Obtaining Surface Soil Water Content and Energy Fluxes from Remote Measurements of the Normalized Diverence Vegetation Index (NDVI) and Surface Radiant Temperature[J].International Journal of Remote Sensing,1997,18:3145-3166.
[6]Pan Jianping.Extraction of Vegetation Fraction Based on Remote Sensing Classification[J].Journal of Geomatics,2007,32(6):17-19.[潘建平.基于遥感分类的植被覆盖度提取[J].测绘信息与工程,2007,32(6):17-19.]
[7]Zhang Wenbo,Fu Suhua.Error Assessment of Visual Estimation[J].Journal of Beijing Normal University:Natural Science,2001,37(3):402-408.[章文波,符素华.目估法测量植被覆盖度的精度分析[J].北京师范大学学报:自然科学版,2001,37(3):402-408.]
[8]Zhang Yunxia,Li Xiaobing.Overview of Field and Multi-scale Remote Sensing Measurement Approaches to Grassland Vegetation Coverage[J].Advance in Earth Science,2003,18(1):85-93.[张云霞,李晓兵.草地植被盖度的多尺度遥感与实地测量方法综述[J].地球科学进展,2003,18(1):85-93.]
[9]Zhou Q,Robson M,Pilesjo P.On the Ground Estimation of Vegetation Cover in Australian Rangelands[J].International Journal of Remote Sensing,1998,19(9):1815-1820.
[10]Zhang Guanghui,Liang Yimin.Study on Runoff Beginning Ti-me of Artificial Grassland in Loess Hilly Region[J].Journal of Soil and Water Conservation,1995,9(3):78-83.[张光辉,梁一民.黄土丘陵区人工草地径流起始时间研究[J].水土保持学报,1995,9(3):78-83.]
[11]Zhao Chunling,Li Zhigang.Vegetation Cover Degree Monitoring in Helanshan Mountain Project Area of Sino-Germany Cooperation Ningxia Shelter-forest Project[J].Ningxia Agriculture and Forest Science and Technology,2000,(S1):6-14.[赵春玲,李志刚.中德合作宁夏贺兰山封山育林育草项目区植被覆盖度监测[J].宁夏农林科技,2000,(S1):6-14.]
[12]Woebbecke D M.Plant Species Identification,Size,and Enum-eration Using Machine Vision Techniques on Near-binary Images[J].Proceedings of SPIE,1993,1836:208-219.
[13]Deering D W.Rangeland Reflectance Characteristics Measur-ed by Aircraft and Spacecraft Sensors[D],1978,Texas A & M University.

 

[1] 苏阳,祁元,王建华,徐菲楠,张金龙. 基于航空高光谱影像的额济纳绿洲土地覆被提取[J]. 遥感技术与应用, 2018, 33(2): 202-211.
[2] 段金亮,王杰,张婷. 一种基于光谱归一化下的植被覆盖度反演算法[J]. 遥感技术与应用, 2018, 33(2): 252-258.
[3] 方雨晨,王培燕,田庆久. 不同覆盖度下小麦农田土壤对NDVI影响模拟分析[J]. 遥感技术与应用, 2017, 32(4): 660-666.
[4] 周在明,杨燕明,陈本清. 基于无人机影像的滩涂入侵种互花米草植被信息提取与覆盖度研究[J]. 遥感技术与应用, 2017, 32(4): 714-720.
[5] 吴志杰,何国金,王猛猛,傅娇凤,邹丹. 南方丘陵区植被覆盖度遥感估算与时空变化研究—以福建省永定县为例[J]. 遥感技术与应用, 2016, 31(6): 1201-1208.
[6] 陈阳,范建容,张云,李胜,甘泉,应国伟,曹伟超. 多云雾地区高时空分辨率植被覆盖度构建方法研究[J]. 遥感技术与应用, 2016, 31(3): 518-529.
[7] 李艺梦,祁元,马明国. 基于Landsat8影像的额济纳荒漠绿洲植被覆盖度估算方法对比研究[J]. 遥感技术与应用, 2016, 31(3): 590-598.
[8] 王敏,付迎春. 城市异质植被的覆盖度估算模型比较研究[J]. 遥感技术与应用, 2015, 30(2): 364-369.
[9] 张航,仲波,洪友堂,万华伟,柳钦火. 近20多年来赣州地区稀土矿区遥感动态监测[J]. 遥感技术与应用, 2015, 30(2): 376-382.
[10] 谭清梅,刘红玉,张华兵,王 聪,侯明行. 基于遥感的江苏省滨海湿地景观植被覆盖度分级研究[J]. 遥感技术与应用, 2013, 28(5): 934-940.
[11] 魏铼,胡卓玮. SAR影像海洋表面溢油检测方法与实现[J]. 遥感技术与应用, 2013, 28(1): 34-43.
[12] 王刚,余洁,朱腾,张中山,赵争. 改进的遗传算法用于极化合成孔径雷达影像非监督分类[J]. 遥感技术与应用, 2013, 28(1): 65-71.
[13] 王庆,曾琪明,焦健. 全极化SAR极化特征谱应用研究[J]. 遥感技术与应用, 2012, 27(6): 896-903.
[14] 薛星宇,刘红玉. 基于ALOS影像的盐城海滨湿地遥感信息分类方法研究[J]. 遥感技术与应用, 2012, 27(2): 248-255.
[15] 马娜,刘越,胡云锋,张学利,艳燕. 内蒙古浑善达克沙地南部草地盖度探测及其变化分析[J]. 遥感技术与应用, 2012, 27(1): 128-134.