Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (4): 829-838    DOI: 10.11873/j.issn.1004-0323.2019.4.0829
遥感应用     
基于PSI技术的芜湖市地面沉降时空特征分析
黄静1,2(),王芳1,2,张运1,2()
1. 安徽师范大学地理与旅游学院,安徽 芜湖 241003
2. 资源环境与地理信息工程安徽省工程技术研究中心,安徽 芜湖 241003
Analysis of Temporal and Spatial Characteristics of Ground Subsidence in Wuhu City based on PSI Technology
Jing Huang1,2(),Fang Wang1,2,Yun Zhang1,2()
1. School of Geography and Tourism, Anhui Normal University, Wuhu 241003, China
2. Engineering Technology Research Center of Resources Environment and GIS, Anhui Province, Wuhu 241003, China
 全文: PDF(19831 KB)   HTML
摘要:

城市的沉降监测有利于了解区域实时高程,可为地质灾害与防护部门提供数据依据,避免因高程损失而带来的地质灾害。基于2016年1月至2017年12月共22景Sentinel-1A干涉宽幅模式影像数据,利用永久散射体合成孔径雷达干涉测量技术以及合成孔径雷达差分干涉测量技术进行芜湖市地表形变监测,并分析研究区地面沉降的时空分布特征。空间上,阐述芜湖市地面沉降的整体格局,再以道路为专题,分析了道路的沉降分布格局。时间上,以时间为基线,逐月分析地面沉降部分在年内的具体变化。结果表明:空间上,芜湖市地面沉降主要集中在长江以东的范围,呈现出由西向东逐渐增加的趋势,长江以西呈现零星漏斗式沉降分布,其中,沉降累积量也与道路的密度与建设相关,道路汇集区与修建区域的沉降累积量较大;时间上,研究区整体沉降量各月变化较均匀,其中,沉降量变化范围在6月最大,10月与11月最小。

关键词: 地面沉降永久散射体干涉测量时间序列芜湖市    
Abstract:

The settlement monitoring in the city is conducive to the understanding of the regional real-time elevation, which can provide the data basis for the geological disaster and protection department to avoid the geological disasters caused by the loss of elevation. Based on January 2016 to December 2017, a total of 22 scenes Sentinel-1A wide interference pattern of imaging data, the surface deformation monitoring of Wuhu city was carried out using PSI and DInSAR technology, and the spatial and temporal distribution characteristics of ground subsidence in the study area were analyzed. In space, the overall pattern of ground subsidence in Wuhu city is expounded, and the settlement distribution pattern of the road is analyzed. In time, monthly analysis of land subsidence in the specific changes in the year. Results show that the spatially, Wuhu, the range of land subsidence mainly concentrated in the east of the Yangtze river, presents the trend of increase gradually from west to east, west of the Yangtze river region of land subsidence is sporadic funnel type distribution. Among them, the settlement accumulation is also related to the density of the roads and the construction of roads, the settlement accumulation of road gathering area and construction area is large. In terms of time, the overall settlement volume of the study area was more uniform in each month, among which the variation range of settlement volume was the largest in June, and the smallest in October and November.

Key words: Subsidence monitoring    PSI    Time series analysis    Wuhu city
收稿日期: 2018-04-28 出版日期: 2019-10-16
ZTFLH:  TP79  
通讯作者: 张运     E-mail: cassie_HJ@163.com;zy2009@mail.ahnu.edu.cn
作者简介: 黄 静(1996—),女,安徽合肥人,硕士研究生,主要从事资源环境遥感研究。E?mail:cassie_HJ@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄静
王芳
张运

引用本文:

黄静,王芳,张运. 基于PSI技术的芜湖市地面沉降时空特征分析[J]. 遥感技术与应用, 2019, 34(4): 829-838.

Jing Huang,Fang Wang,Yun Zhang. Analysis of Temporal and Spatial Characteristics of Ground Subsidence in Wuhu City based on PSI Technology. Remote Sensing Technology and Application, 2019, 34(4): 829-838.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.4.0829        http://www.rsta.ac.cn/CN/Y2019/V34/I4/829

图1  研究区道路概况图
图2  研究区2017年7月19日Sentinel-1A影像强度图
序号

成像

日期

时间

基线/d

垂直基线

/m

多普勒中心

频率/Hz

120160114-55220.702-5.698
220161227-2047.535-7.799
320170108-19230.837-8.35
420170201-168-28.819-5.611
520170225-14435.696-10.199
620170309-13242.249-10.57
720170321-120-14.654-6.355
820170414-96-68.4673.933
920170520-60-69.218.743
1020170613-36-8.881.911
1120170625-2410.4792.652
1220170719000
132017073112-63.3593.981
142017081224-49.0512.781
152017091760-39.4656.732
162017101184-86.49.868
172017102396-27.5590.69
182017110410851.5453.936
192017111612038.2574.44
2020171128132-28.901-0.645
212017121014421.817-15.496
2220171222156100.058-5.829
表1  20景Sentinel-1A影像数据集
图3  2016年芜湖市沉降量分布图
图4  2017年芜湖市沉降量分布图
图5  芜湖县级道路沉降速率分布图
图6  高速公路沉降速率分布图
图7  铁路沉降速率分布图
图8  时间序列上研究区沉降累积量分布图
图9  研究区形变量月份变化
1 KhorramiM, AlizadehB, TousiE G, et al. How Groundwater Level Fluctuations and Geotechnical Properties Lead to Asymmetric Subsidence: A PSInSAR Analysis of Land Deformation over a Transit Corridor in the Los Angeles Metropolitan Area[J]. Remote Sensing, 2019, doi:10.3390/rs11040377.
doi: 10.3390/rs11040377
2 CianF, BlascoJ M D, CarreraL. Sentinel-1 for Monitoring Land Subsidence of Coastal Cities in Africa Using PSInSAR: A Methodology based on the Integration of SNAP and StaMPS[J]. Geoosciences, 2019, doi:10.3390/geosciences9030124.
doi: 10.3390/geosciences9030124
3 Jong Sen Lee. Polarimetric Radar Imaging: Form Basics to Applications[M]. Beijing: Publishing House of Electronic Industry, 2013.
3 李仲森. 极化雷达成像基础与应用[M]. 北京: 电子工业出版社, 2013.
4 LiShaoqing, YangWunian, YangYantong, et al. Application of Sentinel-1A_IW Radar Image in the Information Extraction of Seismic Deformation[J]. Surveying and Mapping, 2016, 39(2):56-59.
4 李少青, 杨武年, 杨彦通,等. Sentinel-1A_ IW雷达影像在地震形变信息提取中的应用[J]. 测绘, 2016, 39(2):56-59.
5 ZhaRixing. Analysis of Engineering Geological Characteristics of Medium-weathered Limestone in Wuhu[J]. Anhui Architecture, 2013, 20(6):109-110.
5 查日兴.浅析芜湖市区中风化石灰岩的工程地质特征[J]. 安徽建筑, 2013, 20(6):109-110.
6 FanJinghui, GuoHuadong, GuoXiaofang, et al. Monitoring Subsidence in Tianjin Area Using Interferogram Stacking based on Coherent Targets [J]. Journal of Remote Sensing, 2008, 12(1):111-118.
6 范景辉, 郭华东, 郭小方,等. 基于相干目标的干涉图叠加方法监测天津地区地面沉降[J]. 遥感学报, 2008, 12(1):111-118.
7 LuoXiaojun, HuangDingfa, LiuGuoxiang. On Urban Ground Subsidence Detection based on PS-DInSAR-A Case Study for Shanghai[J]. Bulletin of Surveying and Mapping, 2009(4):4-8.
7 罗小军, 黄丁发, 刘国祥. 基于永久散射体雷达差分干涉测量的城市地面沉降研究——以上海地面沉降监测为例[J]. 测绘通报, 2009(4):4-8.
8 GoldsteinR M, EngelhardtH, KambB, et al. Satellite Radar Interferometry for Monitoring Ice Sheet Motion: Application to an Antarctic Ice Stream[J]. Science, 1993, 262(5139):1525-1530.
9 AmelungF, GallowayD L, BellJ W, et al. Sensing the Ups and Downs of Las Vegas: InSAR Reveals Structural Control of Land Subsidence and Aquifer-system Deformation[J]. Geology, 1999, 27(6):483-486.
10 FerrettiA, PratiC, RoccaF. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry[J]. IEEE Transactions on Geoscience & Remote Sensing, 2000, 38(5):2202-2212.
11 FerrettiA, PratiC, RoccaF. Permanent Scatterers in SAR Interferometry[J]. Proc Igarss, 2001, 39(1):8-20.
12 BerardinoP, FornaroG, LanariR, et al. A New Algorithm for Surface Deformation Monitoring based on Small Baseline Differential SAR Interferograms[J]. Geoscience & Remote Sensing IEEE Transactions on, 2003, 40(11):2375-2383.
13 ColesantiC, FerrettiA, LocatelliR, et al. Permanent Scatterers: Precision Assessment and Multi-platform Analysis[C]∥Geoscience and Remote Sensing Symposium. IEEE International Geoscience and Remote Sensing Symposium '03. 2003:1193-1195.
14 LeiKunchao, JiaSanman, ChenBeibei, et al. Land Subsidence Detection based on PS-InSAR in Langfang[J]. Remote Sensing Technology and Application, 2013,28(6):1114-1119.
14 雷坤超, 贾三满, 陈蓓蓓,等. 基于PS-InSAR技术的廊坊市地面沉降监测研究[J]. 遥感技术与应用, 2013, 28(6):1114-1119.
15 WangQi. A Study of Ground Deformation over Taiyuan City Using PS-InSAR Technique[J]. Bulletin of Surveying and Mapping, 2014(5):71-75.
15 王琪. 利用永久散射体雷达干涉技术进行太原市地面沉降监测[J]. 测绘通报, 2014(5):71-75.
16 ZhouChaodong, GongHuili, ZhangYouquan, et al. The Influence of Building Load to Land Subsidence in Beijing Plain based on PS-InSAR and GIS[J]. Journal of Geo-information Science, 2016, 18(11):1551-1562.
16 周朝栋, 宮辉力, 张有全,等. 基于PS-InSAR和GIS的北京平原区建筑荷载对地面沉降的影响[J]. 地球信息科学学报, 2016, 18(11):1551-1562.
17 LiosisN, MarpuP R, PavlopoulosK, et al. Ground Subsidence Monitoring with SAR Interferometry Techniques in the Rural Area of Al Wagan, UAE[J]. Remote Sensing of Environment, 2018, 216:276-288.
18 van der HorstT, RuttenM M, van de GiesenN C,et al. Monitoring Land Subsidence in Yangon, Myanmar Using Sentinel-1 Persistent Scatterer Interferometry and Assessment of Driving Mechanisms[J]. Remote Sensing of Environment, 2018, 217:101-110.
19 YanW, LiaoM S, De-RenL I, et al. Subsidence Velocity Retrieval from Long-term Coherent Targets in Radar Interferometric Stacks[J]. Chinese Journal of Geophysics, 2007, 50(2):598-604.
20 ZhangL, DingX, LuZ. Modeling PSI Time Series Without Phase Unwrapping[J]. IEEE Transactions on Geoscience & Remote Sensing, 2011, 49(1):547-556.
21 GallowayD L, BurbeyT J. Review: Regional Land Subsidence Accompanying Groundwater Extraction [J]. Hydrogeology Journal, 2011, 19(8):1459-1486.
22 ChenF, LinH, ZhangY, et al. Ground Subsidence Geo-hazards Induced by Rapid Urbanization: Implications from InSAR Observation and Geological Analysis[J]. Natural Hazards & Earth System Sciences, 2012, 12(4):935-942.
23 SchwerdtM, SchmidtK, RamonN T, et al. Independent Verification of the Sentinel-1A System Calibration[C]∥IEEE. Geoscience and Remote Sensing Symposium2014:994-1007.
24 LanariR, MoraO, ManuntaM, et al. A Small-baseline Approach for Investigating Deformations on Full-resolution Differential SAR Interferograms.[C]∥IEEE. Picture Coding Symposium. IEEE, 2013:273-276.
[1] 许文鑫, 周玉科, 梁娟珠. 基于变化点的青藏高原植被时空动态变化研究 [J]. 遥感技术与应用, 2019, 34(3): 667-676.
[2] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[3] 周晓宇,陈富龙. 四川大熊猫栖息地PALSAR时序数据森林覆盖动态监测研究[J]. 遥感技术与应用, 2017, 32(6): 1100-1106.
[4] 姜涛,朱文泉,詹培,唐珂,崔雪锋,张天一. 一种抗时序数据噪声的冬小麦识别方法研究[J]. 遥感技术与应用, 2017, 32(4): 698-708.
[5] 李洛晞,沈润平,李鑫慧,郭佳. 基于MODIS时间序列森林扰动监测指数比较研究[J]. 遥感技术与应用, 2016, 31(6): 1083-1090.
[6] 冯莉,李柳华,郭松,卢荻. HJ-1A NDVI与MODIS NDVI时间序列提取植被物候特征对比研究[J]. 遥感技术与应用, 2016, 31(6): 1158-1166.
[7] 马海萍,冯建刚,窦喜英,李晓峰,张辉. 2016年门源M6.4地震前区域地壳形变特征[J]. 遥感技术与应用, 2016, 31(6): 1167-1173.
[8] 周惠慧,付东杰,张立福,王文生,岑奕,王晋年. 基于数字相机的草地物候模拟及其与气象因子关系的研究[J]. 遥感技术与应用, 2016, 31(5): 966-974.
[9] 晋锐. 中国长时间序列地表冻融状态数据集[J]. 遥感技术与应用, 2016, 31(4): 820-826.
[10] 林辉,柯长青. COSMOGSkyMed数据在常州市地表形变监测中的应用[J]. 遥感技术与应用, 2016, 31(3): 599-606.
[11] 赵永光,李传荣,马灵玲,唐伶俐,王宁. 一种遥感图像太阳—观测几何归一化方法[J]. 遥感技术与应用, 2016, 31(2): 260-266.
[12] 杜一男,李晓峰,赵凯,武黎黎,郑兴明,姜涛. NASA系列雪参数反演算法在单像元内的时间序列验证与分析[J]. 遥感技术与应用, 2016, 31(2): 332-341.
[13] 王颖洁,刘良云,王志慧. 基于时序Landsat数据的三江平原植被地表类型变化遥感探测研究[J]. 遥感技术与应用, 2015, 30(5): 959-968.
[14] 董淑英,晋锐,亢健,李大治. ASAR GM后散时间序列数据估算黑河上游地表土壤水分[J]. 遥感技术与应用, 2015, 30(4): 667-676.
[15] 刘亚南,肖飞,杜耘. Logistic函数方法拟合多时序NDVI数据的改进研究[J]. 遥感技术与应用, 2015, 30(4): 737-743.