Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (3): 587-595    DOI: 10.11873/j.issn.1004-0323.2020.3.0587
LUCC专栏     
2000~2015年北京市土地利用强度及其辐射反馈评估
唐希颖1,2(),崔耀平1,2(),李楠1,2,付一鸣2,刘小燕2,闰亚迪2
1.黄河中下游数字地理技术教育部重点实验室,河南 开封 475004
2.河南大学 环境与规划学院,河南 开封 475004
Land Use Intensity and Radiation Feedback in Beijing from 2000 to 2015
Xiying Tang1,2(),Yaoping Cui1,2(),Nan Li1,2,Yiming Fu2,Xiaoyan Liu2,Yadi Run2
1.Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Kaifeng 475004, China
2.College of Environment and Planning, Henan University, Kaifeng 475004, China
 全文: PDF(4827 KB)   HTML
摘要:

当前很多研究关注城市扩展及其热岛效应,但不同土地利用强度对辐射能量的影响尚有待进一步的分析。以北京市为例,基于2000和2015年的土地利用数据,按照人为活动对土地的利用程度,将北京市的土地利用变化划分为5类:即老城区、城市扩展区、混合变化区、耕地及自然纯像元区。在此基础上,在反照率和太阳辐射遥感反演数据的支持下,分析2000~2015年由地表反照率引起的辐射强迫(RF, Radiative Forcing),并探讨了RF与植被的关系。结果表明:相比自然纯像元区域,老城区、城市扩展区、混合变化区及耕地的RF在研究时段内均明显增加,后三年的RF均值比前三年增加了0.78 W/m2以上,远大于自然纯像元区的RF增量(0.19 W/m2)。本研究同时发现,植被绿度随土地利用强度的增加而逐年下降,但植被生长期长度却有所延长,两者综合作用于地表反照率,促使了RF的增加,说明单纯从辐射平衡来讲,北京市的土地利用变化在一定程度上增强了RF。

关键词: 土地覆盖辐射平衡植被指数物候反照率    
Abstract:

Many current studies focus on urban expansion and its heat island effect, but the impact of different land use intensity on radiant energy needs further analysis. Based on the land use data of 2000 and 2015 in Beijing, this study divided the land use of Beijing into five types according to the influence degree of human activities and vegetation resilience, namely, the old urban areas, urban expansion areas, unchanged cropland areas, mixed pixel areas with changed gridcells, and unchanged pure pixel areas. On this basis, we calculated Radiative Forcing (RF) due to the change of surface albedo and explored the relationship between RF and vegetation cover. The results showed that: (1) In pure pixel areas, natural vegetation had a lower albedo, and the corresponding RF was larger than the other four land use type areas. However, under the influence of human activities, RF in the four land use type areas showed an obvious increasing trend during the research period, and the increment was also larger than RF in PP areas. (2) Comparing with unchanged pure pixel, the EVI within the other four human-affected land type areas (old urban areas, urban expansion areas, mixed pixel, and unchanged cropland) decreased but the LOS extended. The combined effect of LOS and EVI contributed to the decreasing trend of surface albedo, which prompted the increase of RF. Our finding highlights that human activities often enhances RF by affecting the intensity of land use. This study has important reference value for analyzing the climate feedback of land use change from physical mechanism.

Key words: Land use    Radiation balance    Vegetation index    Phenology    Albedo
收稿日期: 2019-07-18 出版日期: 2020-07-10
ZTFLH:  TP79  
基金资助: 国家自然科学基金项目“区域下垫面和温室气体变化对气温的调节效应研究”(41671425);“京津冀地区土地利用变化对区域气温的调节机制和贡献率研究”(41401504)
通讯作者: 崔耀平     E-mail: xiyingtang123@vip.henu.edu.cn;cuiyp@lreis.ac.cn
作者简介: 唐希颖(1997-),女,河南开封人,硕士研究生,主要从事植被遥感与气候变化方面的研究。E?mail:xiyingtang123@vip.henu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
唐希颖
崔耀平
李楠
付一鸣
刘小燕
闰亚迪

引用本文:

唐希颖,崔耀平,李楠,付一鸣,刘小燕,闰亚迪. 2000~2015年北京市土地利用强度及其辐射反馈评估[J]. 遥感技术与应用, 2020, 35(3): 587-595.

Xiying Tang,Yaoping Cui,Nan Li,Yiming Fu,Xiaoyan Liu,Yadi Run. Land Use Intensity and Radiation Feedback in Beijing from 2000 to 2015. Remote Sensing Technology and Application, 2020, 35(3): 587-595.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.3.0587        http://www.rsta.ac.cn/CN/Y2020/V35/I3/587

图1  2000~2015北京市土地利用变化情况
图2  2000~2015年各类土地利用类型反照率的年变化趋势
图3  各土地利用类型下RF的年变化和各土地利用在不同时段的趋势(Slope)比较
图4  各类土地利用类型的EVI及LOS箱线图
图5  2000~2015年EVI和LOS受人为影响各类土地覆被与自然纯像元区(绿色线)的标准化年动态比较
图6  RF与EVI和LOS相关关系分析
1 IPCC. Climate Change 2007: The Physical Science Basis[R]. New York, Cambridge University Press, 2007.
2 Betts R A, Falloon P, Goldewijk K K, et al. Biogeophysical Effects of Land Use on Climate: Model Simulations of Radiative Forcing and Large-scale Temperature change[J]. Agricultural and Forest Meteorology, 2007, 142(2): 216-233.
3 Prestele R, Arneth A, Bondeau A, et al. Current Challenges of Implementing Anthropogenic Land-Use and Land-Cover Change in Models Contributing to Climate Change Assessments[J]. Earth System Dynamics, 2017, 8(2): 1-28.
4 Kuang Wenhui. Research Progress and Prospect of Urban Land Use/Cover Change and Ecological Regulation of Thermal Environment[J]. Scientia Geographica Sinica, 2018, 38(10): 1643-1652.
4 匡文慧. 城市土地利用/覆盖变化与热环境生态调控研究进展与展望[J]. 地理科学, 2018, 38(10): 1643-1652.
5 Cui Yaoping, Liu Jiyuan, Hu Yunfeng, et al. Simulation Analysis of Radiation Balance of Different Underlying Surfaces in Cities[J]. Chinese Science Bulletin, 2012, 57(6): 465-473.
5 崔耀平, 刘纪远, 胡云锋, 等. 城市不同下垫面辐射平衡的模拟分析[J]. 科学通报, 2012, 57(6): 465-473.
6 Steffen W, Rockström J, Richardson K, et al. Trajectories of the Earth System in the Anthropocene[J]. Proceedings of the National Academy of Sciences, 2018, 115(33): 201810141.doi:10.10731pnas.1810141115.
doi: 10.10731pnas.1810141115
7 Blok D, Schaepman-Strub G, Bartholomeus H, et al. The Response of Arctic Vegetation to the Summer Climate: Relation between Shrub Cover, NDVI, Surface Albedo and Temperature[J]. Environmental Research Letters, 2011, 6(3): 035502.doi:10.1088/1748-932616131035502.
doi: 10.1088/1748-932616131035502
8 Zhai Jun, Liu Ronggao, Liu Jiyuan, et al. Radiative Forcing over China due to Albedo Change Caused by Land Cover Change during 1990-2010[J]. Journal of Geographical Sciences, 2014, 24(5): 789-801.
9 Hansen J, Nazarenko L, Ruedy R, et al. Earth's Energy Imbalance and Implications[J]. Science, 2005, 308(5727): 1431.doi:10.1126/science.1110252.
doi: 10.1126/science.1110252
10 Shen Yingjie. Simulation Study on Vertical Structure of Urban Heat Island in Beijing[C]∥ The 35th Annual Meeting of Chinese Meteorological Society S11 Urban Meteorology and Environment-the 7th Annual Meeting of Urban Meteorology Forum, Chinese Mmeteorological Society, 2018.[
10 沈滢洁. 北京城市热岛垂直结构的模拟研究[C]∥ 第35届中国气象学会年会: 城市气象与环境——第七届城市气象论坛. 中国气象学会, 2018.
11 Yang Hao, Wang Ziyi, Wang Qian, et al. Study on the Influence of Land Use Change on the Thermal Environment in Beijing-Tianjin-Hebei Urban Agglomeration[J]. Journal of Natural Resources, 2018, 33(11): 1912-1925.
11 杨浩,王子羿,王婧,等.京津冀城市群土地利用变化对热环境的影响研究[J]. 自然资源学报, 2018, 33(11): 1912-1925.
12 Wang Jing, Zhou Weiqi, Xu Kaipeng, et al. Spatio-temporal Pattern of Vegetation Cover and its Relationship with Urbanization in Beijing-Tianjin-Hebei Megaregion from 2000 to 2010[J]. Acta Ecologica Sinica, 2017, 37(21): 7019-7029.
12 王静, 周伟奇, 许开鹏, 等. 京津冀地区城市化对植被覆盖度及景观格局的影响[J]. 生态学报, 2017, 37(21): 7019-7029.
13 Akbari H, Menon S, Rosenfeld A. Global Cooling: Increasing World-wide Urban Albedos to Offset CO2[J]. Climatic Change, 2009, 94(3-4): 275-286.
14 Liu Qinqin, Cui Yaoping, Liu Sujie, et al. Study on Surface Albedo of Spectral Radiation of Different Land Use Types in China[J]. Remote Sensing Technology and Application, 2019, 34(1): 46-56.
14 刘亲亲, 崔耀平, 刘素洁, 等. 中国不同土地利用类型分光辐射地表反照率研究[J]. 遥感技术与应用, 2019, 34(1): 46-56.
15 Houspanossian J, GimÉNez R, JobbÁGy E, et al. Surface Albedo Raise in the South American Chaco: Combined Effects of Deforestation and Agricultural Changes[J]. Agricultural and Forest Meteorology, 2017, 232: 118-127.doi:10.1016/j.aglformet.2016.08.015.
doi: 10.1016/j.aglformet.2016.08.015
16 Tang Rongyun, Zhao Xiang, Tang Bijian, et al. Influence of Urbanization on Radiative Forcing in Beijing[J]. Journal of Beijing Normal University (Natural Science Edition), 2017, 53(4): 443-450, 376.
16 唐荣云, 赵祥, 唐碧剑, 等. 北京地区城市化对辐射强迫的影响估算[J]. 北京师范大学学报(自然科学版), 2017, 53(4): 443-450, 376.
17 Cui Yaoping, Liu Jiyuan, Zhang Xuezhen, et al. Modeling Urban Sprawl Effects on Regional Warming in Beijing-Tianjing-Tangshan Urban Agglomeration[J]. Acta Ecologica Sinica, 2015, 35(4): 993-1003.
17 崔耀平, 刘纪远, 张学珍, 等. 京津唐城市群土地利用变化的区域增温效应模拟[J]. 生态学报, 2015, 35(4): 993-1003.
18 Liu J Y, Liu M L, Tian H Q, et al. Spatial and Temporal Patterns of China's Cropland during 1990-2000: An Analysis based on Landsat TM Data[J]. Remote sensing of Environment, 2005, 98(4): 442-456.
19 Jiang C, Ryu Y. Multi-scale Evaluation of Global Gross Primary Productivity and Evapotranspiration Products derived from Breathing Earth System Simulator (BESS)[J]. Remote Sensing of Environment, 2016, 186: 528-547.
20 Liu Q, Wang L, Qu Y, et al. Preliminary Evaluation of the Long-Term Glass Albedo Product[J]. International Journal of Digital Earth, 2013, 6(Sup 1): 69-95.
21 Muñoz I, Campra P, FernÁNdez-Alba A R. Including CO2-emission Equivalence of Changes in Land Surface Albedo in Life Cycle Assessment, Methodology and Case Study on Greenhouse Agriculture[J]. International Journal of Life Cycle Assessment, 2010, 15(7): 672-681.
22 Bright R, Cherubini M F, Stromman A H. Climate Impacts of Bioenergy: Inclusion of Carbon Cycle and Albedo Dynamics in Life Cycle Impact Assessment[J]. Environmental Impact Assessment Review, 2012, 37: 2-11.
23 Lenton T M, Vaughan N E. The Radiative Forcing Potential of Different Climate Geoengineering Options[J]. Atmospheric Chemistry and Physics, 2009, 9(15): 5539-5561.
24 Li Q,Ma M,Wu X,et al.Snow Cover and Vegetation-Indu-ced Decrease in Global Albedo from 2002 to 2016[J].Journal of Geophysical Research:Atmospheres,2018,123(1):124-138.
25 Qin D, Manning M, Chen Z, et al. IPCC Fourth Assessment Report: Climate Change 2007 (AR4)[M]. Cambridge: Cambridge University Press, 2007.
26 Yuan Ruiyang, Huang Fengrong, Tang Shuo. Review of Urban Heat Island Effect[J]. Territory and Natural Resources Study, 2019(1):11-12.
26 苑睿洋, 黄凤荣, 唐硕. 城市热岛效应研究综述[J]. 国土与自然资源研究, 2019(1): 11-12.
27 Zhang Tian. Plant Selection for the Urban Landscape in Beijing City[D]. Beijing: Beijing Forestry University, 2013.
27 张田. 北京城市植物选择方法研究[D]. 北京: 北京林业大学, 2013.
28 Deng Yu, Si Yuefang. Assessment and Classification of Urban-Rural Development Transformation in China: The Study of Bohai Rim[J]. Geographical Research, 2015,34(12): 2247-2256.
28 邓羽, 司月芳. 北京市城扩展的空间格局与影响因素[J]. 地理研究, 2015, 34(12): 2247-2256.
29 Jiang L, Jiapaer G, Bao A, et al. Vegetation Dynamics and Responses to Climate Change and Human Activities in Central Asia[J]. Science of The Total Environment, 2017, 599: 967-980.doi:10.1016/j.scitotenv.2017.05.012.
doi: 10.1016/j.scitotenv.2017.05.012
30 Boussetta S., Balsamo G., Dutra E., et al. Assimilation of Surface Albedo and Vegetation States from Satellite Observations and Their Impact on Numerical Weather Prediction[J]. Remote Sensing of Environment, 2015, 163: 111-126.
31 Stephens G L, O’Brien D, Webster P J. et al. The Albedo of Earth[J]. Reviews of Geophysics, 2015, 53(1):141-146.
32 Lee S, Ahn J, Kim S, et al. Multiple Albedo Variation Caused by the Shadow Effect of Urban Building and Its Impacts on the Urban Surface Heat Budget[J]. Journal of the Korean Earth Science Society, 2010, 31: 738–748.
33 Cui Y, Xiao X, Zhang Y, et al. Temporal Consistency between Gross Primary Production and Solar-Induced Chlorophyll Fluorescence in the Ten Most Populous Megacity Areas over Years[J]. Scientific Reports, 2017, 7: 14963.doi:10.1038/s41598-017-13783-5.
doi: 10.1038/s41598-017-13783-5
[1] 史姝姝,匡文慧,董斯齐. 21世纪以来西安城乡梯度土地覆盖变化及对城市热岛影响时空特征[J]. 遥感技术与应用, 2020, 35(3): 537-547.
[2] 王红岩,汪晓帆,高亮,李强子,赵龙才,杜鑫,张源. 基于季相变化特征的撂荒地遥感提取方法研究[J]. 遥感技术与应用, 2020, 35(3): 596-605.
[3] 郭紫燕,杨康,刘畅,程亮,李满春. 巴基斯坦土地覆盖数据产品季节性精度评价[J]. 遥感技术与应用, 2020, 35(3): 567-575.
[4] 岳昂,曾庆伟,王怀警. 于桥水库蓝藻水华遥感长时序监测研究[J]. 遥感技术与应用, 2020, 35(3): 694-701.
[5] 谷祥辉,张英,桑会勇,翟亮,李少军. 基于哨兵2时间序列组合植被指数的作物分类研究[J]. 遥感技术与应用, 2020, 35(3): 702-711.
[6] 张新平,乔治,李皓,闫杰,张芳芳,赵栋锋,王得祥,康海斌,杨航,冯扬. 基于Landsat影像和不规则梯形方法遥感反演延安城市森林表层土壤水分[J]. 遥感技术与应用, 2020, 35(1): 120-131.
[7] 赵春亮,许文波,范锦龙. FY-3C中分辨率成像光谱仪数据的窄波段地表反照率验证研究[J]. 遥感技术与应用, 2020, 35(1): 153-162.
[8] 郭雨臣,黄金川,林浩曦. 多源数据融合的中国人口数据空间化研究[J]. 遥感技术与应用, 2020, 35(1): 219-232.
[9] 张正,肖鹏峰,张学良,冯学智,杨永可,胡瑞,盛光伟,刘豪. 青藏高原融雪期积雪反照率特性分析[J]. 遥感技术与应用, 2019, 34(6): 1146-1154.
[10] 刘新杰,魏云霞,焦全军,孙奇,刘良云. 基于时序定量遥感的冬小麦长势监测与估产研究[J]. 遥感技术与应用, 2019, 34(4): 756-765.
[11] 张海东,田婷,张青,陆洲,石春林,谭昌伟,罗明,钱春花. 基于GF-1影像的耕地地块破碎区水稻遥感提取[J]. 遥感技术与应用, 2019, 34(4): 785-792.
[12] 冯婵莹, 汪子豪, 郑成洋. 基于分层线性回归的MODIS反照率产品降尺度方法研究[J]. 遥感技术与应用, 2019, 34(3): 602-611.
[13] 云增鑫, 郑光, 马利霞, 王晓菲, 卢晓曼, 路璐. 联合主被动遥感数据定量评价林下植被对叶面积指数估算的影响[J]. 遥感技术与应用, 2019, 34(3): 583-594.
[14] 许文鑫, 周玉科, 梁娟珠. 基于变化点的青藏高原植被时空动态变化研究 [J]. 遥感技术与应用, 2019, 34(3): 667-676.
[15] 李嘉玲, 董东林, 林刚, 汪箫悦, 王健, 吴朝阳. 基于NDVI数据的江苏省植被物候变化及其影响因子分析[J]. 遥感技术与应用, 2019, 34(2): 367-376.