Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (4): 962-974    DOI: 10.11873/j.issn.1004-0323.2020.4.0962
遥感应用     
基于线性光谱混合分析的乌鲁木齐不透水层提取及其时空变化分析
李荪青1,2(),付碧宏1()
1.中国科学院遥感与数字地球研究所,北京 100094
2.中国科学院大学,北京 100049
Analyzing Temporal-spatial Change of Urumqi Impervious Surface using Linear Spectral Mixture Analysis
Sunqing Li1,2(),Bihong Fu1()
1.Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
2.University of the Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(12899 KB)   HTML
摘要:

利用Landsat TM、OLI多光谱卫星遥感数据,采用VIS(植被-不透水层-土壤)模型和线性光谱混合分析法对丝绸之路经济带核心区乌鲁木齐建城区及其周边进行丰度估算,并针对红色彩钢板屋顶在不透水层丰度图像上低亮度特点,进行改进处理,提高了不透水层丰度估算精度。研究结果表明:1994~2018年的24年间乌鲁木齐市不透水层呈现出显著扩展的特点,其面积从140.41 km2扩大到462.62 km2;扩展速率在1994~2005年间缓慢上升,2005年之后迅速上升;扩展强度先上升,2010~2015年达到最大,之后出现下降;同时,城市不透水层的空间扩展具有明显差异,向西和东北方向扩展最为显著。综合分析指出:乌鲁木齐城市不透水层的空间扩展受到周边山体地形和煤矿开采等因素的限制,而“乌昌一体化”政策是城市扩展的主要助力因素。

关键词: 城市不透水层改进处理彩钢板屋顶时空变化丝绸之路经济带核心区    
Abstract:

The method of linear spectral mixture analysis combined with V-I-S model(Vegetation-Imperious surface-Soil) is used to estimate the impervious surface abundance of Urumqi city, which is in the core area of the Silk Road Economic Belt, using Landsat OLI and TM multi-spectral data. Because the red color steel shed has low brightness on the impervious surface brightness image, an improvement was proposed, and then verify the accuracy through the interpretation of high-resolution satellite imagery. The results show that: the impervious surface area in Urumqi displayed a significant expansion from 140.41 km2 to 462.62 km2 during past 24 years (1994 to 2018). It expanded slowly during 1994 to 2005, and increased rapidly since 2005. The expansion intensity increased during 1994~2015 and decreased after 2015; and the spatial expansion of urban impervious surface is significantly different, with the largest expansion area in the west and northeast direction. The comprehensive analyses suggested that the expansion of the impervious surface of Urumqi city is limited by the surrounding mountain topography and coal mining, and the “Urumqi-Changji integration” policy is the major driving factor for urban expansion in the past 24 years.

Key words: Urban impervious surface    Improvement    Color steel shed    Temporal-spatial change    The Silk Road Economic Belt
收稿日期: 2019-02-20 出版日期: 2020-09-15
ZTFLH:  TP79  
基金资助: “中国科学院西部青年学者”A类项目(2017?XBQNXZ?A?009)
通讯作者: 付碧宏     E-mail: lisq@radi.ac.cn;fubh@radi.ac.cn
作者简介: 李荪青(1994-),女,江苏镇江人,硕士研究生,主要从事城市遥感研究。E?mail: lisq@radi.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李荪青
付碧宏

引用本文:

李荪青,付碧宏. 基于线性光谱混合分析的乌鲁木齐不透水层提取及其时空变化分析[J]. 遥感技术与应用, 2020, 35(4): 962-974.

Sunqing Li,Bihong Fu. Analyzing Temporal-spatial Change of Urumqi Impervious Surface using Linear Spectral Mixture Analysis. Remote Sensing Technology and Application, 2020, 35(4): 962-974.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.4.0962        http://www.rsta.ac.cn/CN/Y2020/V35/I4/962

传感器影像时间行号列号
Landsat5 TM1994/08/2414329,30
Landsat5 TM2000/09/2514329,30
Landsat5 TM2005/09/0714329,30
Landsat5 TM2010/08/2014329,30
Landsat8 OLI2015/09/0314329
Landsat8 OLI2018/08/2614329
表1  研究所选取影像的信息
图1  2015年Landsat OLI数据研究区概况
图2  技术路线图
图3  Landsat TM数据经MNF变换后的图像
图4  Landsat OLI数据经线性光谱分解后的4种端元丰度图像
图5  红色彩钢板屋顶的现场场景和高分图像特征
图6  LandsatOLI数据的红色彩钢板屋顶提取结果
图7  Landsat OLI数据提取的不透水层丰度图
图8  2015年乌鲁木齐不透水层丰度图
图9  高分影像验证结果
图10  乌鲁木齐2015年Landsat OLI数据不透水层丰度估值与真值的关系
图11  不同年份阈值分割获得的不透水层空间分布
年份199420002005201020152018
不透水层面积(km2)140.41168.60197.06265.19376.04462.62
扩展面积(km2)——28.1928.4668.12110.8686.58
扩展强度(%)3.353.386.918.367.67
扩展速率(km2*a-1)4.705.6913.6222.1728.86
表2  乌鲁木齐不同时期不透水层面积及扩展情况
年份扩展面积/km2
东北东南西南西西北
1994~20000.3910.662.366.432.251.870.451.79
2000~20053.190.190.410.603.154.2914.806.81
2005~20102.8015.871.651.310.541.2513.834.09
2010~201520.4226.081.718.7010.6022.2328.4620.71
2015~201811.277.701.743.480.997.3114.7112.59
表3  乌鲁木齐市不同时期不透水层扩展方位面积
图12  局部不透水层提取效果图
图13  乌鲁木齐不同时期不透水层面积及扩展情况
图14  1994-2018乌鲁木齐市不透水层扩展方位变化图
图15  Landsat OLI建城区东南侧基岩山体图像
图16  实地考察
图17  端元波谱曲线
1 Zhao Rong, Wang Enyong, Zhang Xiaolin, et al. Human Geography[M]. Beijing: High Educaton Press, 2006.
1 赵荣,王恩涌,张小林,等.人文地理学(第二版)[M]. 北京:高等教育出版社,2006.
2 Gong P, Li X C, Wei Z. 40-Year(1978–2017) Human Settlement Changes in China Reflected by Impervious Surfaces from Satellite Remote Sensing[J].Science Bulletin,2019,64(11):756-763.
3 Xian G, Homer C. Updating the 2001 National Land Cover Database Impervious Surface Products to 2006 Using Landsat Imagery Change Detection Methods[J]. Remote Sensing of Environment,2010,114(8):1676-1686.
4 Jr Arnold C L, Gibbons C J. Impervious Surface Coverage: The Emergence of a Key Environmental Indicator[J]. Journal of the American Planning Association, 1996,62(2):243-258.
5 Weng Q H. Remote Sensing of Impervious Surfaces in the Urban Areas: Requirements, Methods, and Trends[J]. Remote Sensing of Environment,2012, 117(2):34-49.
6 Jacobson C R. Identification and Quantification of the Hydrological Impacts of Imperviousness in Urban Catchments: A Review[J]. Journal of Environmental Management,2011,92(6): 1438-1448.
7 Yuan F, Bauer, Marvin E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery[J]. Remote Sensing of Environment, 2007,106(3):375-386.
8 Stankowski S J. Population density as an indirect indicator or urban and suburban land-surface modifications[J]. U.S. Geological Survey Professional Paper 800-B. Washington, DC: U.S. Geological Survey. 1972: 219-224.
9 Ridd M K. Exploring a VIS(Vegetation-Impervious Surface-Soil) Model for Urban Ecosystem Analysis through remote sensing: Comparative Anatomy for Cities[J]. International Journal of Remote Sensing, 1995,16(12): 2165-2185.
10 Wu C S, Murray A T. Estimating Impervious Surface Distribution by Spectral Mixture Analysis[J]. Remote Sensing of Environment,2003, 84(4):493-505.
11 Zhou Ji, Chen Yunhao, Zhang Jinshui. An Analysis of the City Temperature Abnormal Area based on TM Data[J]. Remote Sensing for Land & Resources, 2007,19(3):13-17+27.
11 周纪,陈云浩,张锦水. 北京城市不透水层覆盖度遥感估算[J]. 国土资源遥感, 2007,19(3):13-17+27.
12 Jin Jing, Wang Bin, Zhang Liming. Estimating Urban Impervious Surface Distribution by Linear Spectral Mixture Analysis[J]. Journal of Fudan University (Natural Science).2010, 49(2):197-208+273-274.金晶,王斌,张立明. 基于线性光谱混合分析的城市不透水层分布估算[J]. 复旦学报(自然科学版),2010,49(2):197-208+273-274.
13 Xia Junshi, Du Peijun, Pang Yunfeng, et al. Urban Impervious Surface Area Extraction and Analysis based on Hyperspectral Remote Sensing Image[J]. Journal of China University of Mining & Technology,2011, 40(04):660-666.
13 夏俊士,杜培军,逄云峰,等.基于高光谱数据的城市不透水层提取与分析[J]. 中国矿业大学学报,2011,40(04):660-666.
14 Esch T, Himmler V, Schorcht G, et al. Large-area Assessment of Impervious Surface based on Integrated Analysis of Single-date Landsat-7 Images and Feospatial Vector Data[J]. Remote Sensing of Environment, 2009, 113(8):1678-1690.
15 Lu D S, Tian H Q, Zhou G M, et al. Regional Mapping of Human Settlements in Southeastern China with Multisensor Remotely Sensed Data[J]. Remote Sensing of Environment,2008, 112(9):3668-3679.
16 Xian G, Crane M. Assessments of Urban Growth in the Tampa Bay Watershed Using Remote Sensing Data[J]. Remote Sensing of Environment,2005, 97(2):203-215.
17 Zhang Y Z, Zhang H S, Lin H. Improving the Impervious Surface Estimation with Combined Use of Optical and SAR Remote Sensing Images[J]. Remote Sensing of Environment, 2014,141(2):155-167.
18 Yu Sisi, Sun Zhong Chang, Guo Huadong, et al. 2017.Monitoring and Analyzing the Spatial Dynamics and Patterns of Megacities Along the Maritime Silk Road[J]. Journal of Remote Sensing, 2017,21(2):169-181.
18 禹丝思, 孙中昶, 郭华东, 等.海上丝绸之路超大城市空间扩展遥感监测与分析[J]. 遥感学报, 2017,21(2):169-181.
19 Yan Ruliu, Yang Shuwen, Zhang Shan, et al. An New Extraction Method of Impervious Surface based on Landsat-8[J]. Remote Sensing Information. 2019,34(4):128-132.闫如柳,杨树文,张珊,等.一种Landsat-8影像提取不透水面的新方法[J].遥感信息,2019,34(4):128-132.
20 Zha Yong, Ni ShaoXiang, Yang Shan. An Effective Approach to Automatically Extract Urban Land-use from TM Imagery[J]. Journal of Remote Sensing, 2003,7(1):37-40+82.
20 查勇,倪绍祥,杨山.一种利用TM图像自动提取城镇用地信息的有效方法[J]. 遥感学报, 2003,7(1):37-40+82.
21 Xu Hanqiu. A New Remote Sensing Index for Fastly Extracting Impervious Surface Information[J]. Geomatics and Information Science of Wuhan University,2008,33(11):1150-1153.
21 徐涵秋.一种快速提取不透水面的新型遥感指数[J]. 武汉大学学报·信息科学版, 2008,33(11):1150-1153.
22 Deng C B, Wu C S. BCI: A Biophysical Composition Index for Remote Sensing of Urban Environments[J]. Remote Sensing of Environment,2012,127(5):247-259.
23 Lu D S, Li G Y, Kuang W H, et al. Methods to Extract Impervious Surface Areas from Satellite Images[J]. International Journal of Digital Earth, 2014,7(2):93-112.
24 Li Deren, Luo Hui, Shao Zhenfeng. Review of Impervious Surface Mapping Using Remote Sensing Technology and Its Application[J]. Geomatics and Information Science of Wuhan University, 2016,41(5):569-577+703.
24 李德仁,罗晖,邵振峰.遥感技术在不透水层提取中的应用与展望[J]. 武汉大学学报(信息科学版),2016,41(5):569-577+703.
25 Wu C S, Yuan F. Seasonal Sensitivity Analysis of Impervious Surface Estimation with Satellite Imagery[J].Photogrammetric Engineering & Remote Sensing, 2007, 73(12):1393-1401.
26 Flanagan M, Civco D L. Subpixel Impervious Surface Mapping. The ASPRS Annual Convention[C]∥ St. Louis, Missouri, USA,2001.
27 Xu Hanqiu. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI)[J]. Journal of Remote Sensing, 2005,9(5): 589-595.
27 徐涵秋. 利用改进的归一化差异水体指数(MNDWI) 提取水体信息的研究[J]. 遥感学报, 2005,9(5): 589-595.
28 Green A, Berman M, Switzer P, Craig M D. A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal[J]. IEEE Transactions on Geoscience & Remote Sensing, 1988,26(1):65-74.
29 Wang Weiwu, Jin Jianwei,Xiao Zuopeng, et al. Urban Expansion and Its Driving Forces based on Remote Sensed Data and GIS: A Case Study of Hangzhou Dity from 1991 to 2008[J]. Geographical Research,2009, 28(3):685-695.
29 王伟武, 金建伟, 肖作鹏,等. 近18年来杭州城市用地扩展特征及其驱动机制[J]. 地理研究, 2009,28(3):685-695.
30 Liang Renfeng. Spectral Characteristic and Impact Factor Analysis of the Color Steel Material [D]. Changchun: Northeast Normal University,2012.
30 梁壬凤. 彩钢材料的光谱特性及影响因子分析[D]. 长春: 东北师范大学,2012.
31 Godwin C, Chen G, Singh K K. The Impact of Urban Residential Development Patterns on Forest Carbon Density: An Integration of LiDAR, Aerial Photography and Field Mensuration[J]. Landscape and Urban Planning, 2015,136: 97-109.
32 Pan Chen, Zhu Xiyang Y, Jia Wenxiao, et al. Near Surface CO2 Concentration and Its Quantitative Relationship with Character of Underlying Surface in Shanghai City, China[J]. Journal of Applied Ecology, 2015,26(7):2123-2130[潘晨,朱希扬,贾文晓,等.上海市近地面CO_2浓度及其与下垫面特征的定量关系[J].应用生态学报, 2015,26(7):2123-2130).
33 Pan Jinghu, Liu Chunyu, Li Xiaoxue. Spatial Research on Urban Heat Island and Underlying Surface Using Spectral Mixture Analysis[J]. Remote Sensing Technology And Application. 2009,24(4):462-468.潘竟虎,刘春雨,李晓雪.基于混合光谱分解的兰州城市热岛与下垫面空间关系分析[J].遥感技术与应用,2009,24(4):462-468.
34 Liu Yaxuan, Zhang Xiaolei, Lei Jun, et al. Urban Expansion and Morphological Changes of Oasis Cities in Xinjiang[J]. Journal of Soil and Water Conservation, 2009,23(6): 252-256.
34 刘雅轩,张小雷,雷,朱磊,等. 新疆绿洲城市扩展与空间形态变化分析[J].水土保持学报,2009,23(6):252-256.
35 Gert D R. Environmental Conflicts in Compact Cities: Complexity,Decision-making,and Policy Approaches[J].Environment and Planning B:Planning and Design,2000,27(2):151-162.
[1] 龙爽,郭正飞,徐粒,周华真,方伟华,许映军. 基于Google Earth Engine的中国植被覆盖度时空变化特征分析[J]. 遥感技术与应用, 2020, 35(2): 326-334.
[2] 郑贵洲,熊良超,廖艳雯,王红平. 利用MODIS数据反演南海南部海表温度及时空变化分析[J]. 遥感技术与应用, 2020, 35(1): 132-140.
[3] 王莹莹, 袁金国, 张莹, 吴朝阳. 中国温带地区植被物候期时空变化特征及对总初级生产力的影响[J]. 遥感技术与应用, 2019, 34(2): 377-388.
[4] 冯姣姣, 王维真, 李净, 刘雯雯. 基于BP神经网络的华东地区太阳辐射模拟及时空变化分析[J]. 遥感技术与应用, 2018, 33(5): 881-889.
[5] 茹皮亚·西拉尔, 杨辽. 新疆棉花物候时空变化遥感监测及气温影响分析[J]. 遥感技术与应用, 2018, 33(5): 923-931.
[6] 郝斌飞,韩旭军,马明国,刘一韬,李世卫. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用, 2018, 33(4): 600-611.
[7] 郝建盛,张飞云,赵鑫,刘云霄,李兰海. 基于GRACE监测数据的伊犁—巴尔喀什湖盆地水储量变化特征及影响因素[J]. 遥感技术与应用, 2017, 32(5): 883-892.
[8] 唐志光,王建,王欣,彭焕华,梁继. 近15年天山地区积雪时空变化遥感研究[J]. 遥感技术与应用, 2017, 32(3): 556-563.
[9] 杨志刚,达娃,除多. 近15 a青藏高原积雪覆盖时空变化分析[J]. 遥感技术与应用, 2017, 32(1): 27-36.
[10] 周春艳,厉青,张丽娟,马鹏飞,陈辉,王中挺. 遥感监测2005~2015年中国NO2时空特征及分析影响因素[J]. 遥感技术与应用, 2016, 31(6): 1190-1200.
[11] 张韵婕,桂朝,刘庆生,刘高焕. 基于遥感和气象数据的蒙古高原1982~2013年植被动态变化分析[J]. 遥感技术与应用, 2016, 31(5): 1022-1030.
[12] 封敏,李再明,邱炳文,王重洋,罗钰涵. 21世纪初中国农作物与自然植被物候时空差异[J]. 遥感技术与应用, 2016, 31(5): 1003-1012.
[13] 康婷婷,居为民,张春华. 2001~2011年中国农田最大光能利用率参数时空变化特征[J]. 遥感技术与应用, 2016, 31(4): 663-671.
[14] 杨成松,车涛,欧阳斌. 青藏高原地表温度时空变化分析[J]. 遥感技术与应用, 2016, 31(1): 95-101.
[15] 白晓燕,陈晓宏,王兆礼. 基于面向对象分类的土地利用信息提取及其时空变化研究[J]. 遥感技术与应用, 2015, 30(4): 798-809.