Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (5): 1206-1217    DOI: 10.11873/j.issn.1004-0323.2020.5.1206
遥感应用     
哈尔滨城乡梯度建设用地结构变化及不透水面遥感监测分析
刘美1(),杜国明1(),于凤荣2,匡文慧3
1.东北农业大学 经济管理学院,黑龙江 哈尔滨 150030
2.黑龙江省农垦科学院科技情报研究所,黑龙江 哈尔滨 150038
3.中国科学院地理科学与资源研究所,北京 100101
Remote Sensing Monitoring and Analysis of Urban-Rural Gradient Construction Land and Impervious Surface in Harbin
Mei Liu1(),Guoming Du1(),Fengrong Yu2,Wenhui Kuang3
1.College of Economics and Management,Northeast Agricultural University,Harbin 150030,China
2.Institute of Scientific and Technical Information,Heilongjiang Academy of Land Reclamation Region,Harbin 150038,China
3.Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Bingjing 100101,China
 全文: PDF(4298 KB)   HTML
摘要:

在快速城镇化背景下,客观掌握城市扩张进程中的城乡建设用地及内部不透水面变化特征,有利于优化大都市城乡用地结构及空间融合发展。基于城乡建设用地及不透水面遥感监测数据集,应用空间分析模型,对哈尔滨2000~2015年城乡建设用地规模、结构及内部不透水面时空演变特征进行分析,探究城市扩张格局、区位差异、建设用地利用强度及城乡之间的差异。结果表明:①2000年以来城乡建设用地快速扩张了158.32 km2,年变化率和动态度均呈先增大后减小趋势;从城市核心区至远郊区方向其扩张规模依次增大,建设重点不断向城市周边推移,呈现出较明显的空间异质性;②城镇建设用地和独立工矿用地面积及占比逐年增加,扩张来源均以耕地为主;农村居民点占比降低了13.14%,城乡建设用地结构特征发生了较明显变化;③2000~2015年城乡建设用地内部不透水面面积和比例分别增加了145.32 km2和10.04%,城镇建设用地利用强度已达到较高水平,农村居民点用地利用强度快速提高,城市和农村之间的差距不断缩小;自城市核心区至远郊区方向不透水面比例不断降低,可利用潜力越大,不透水面面积增量、比例增量、比例增长率及扩张强度大体呈增加趋势,不透水面与城乡建设用地规模变化趋势相近,可在一定程度上揭示城市扩张轨迹。

关键词: 城市扩张城乡建设用地不透水面遥感监测时空格局    
Abstract:

In the background of rapid urbanization, there is a great significance to optimizing the urban-rural land use structure of metropolises and urban-rural spatial integration development by master the change characteristics of construction land and impervious surface in urban expansion period. Based on the remote sensing monitoring dataset and the internal impervious surface dataset of urban-rural construction land since the 21st century, this research analyzes the structure and impermeable land proportion of urban and rural construction land in Harbin from 2000 to 2015. The purpose is to explore the urban expansion patterns, regional differences, construction land use intensity, and urban-rural differences. The results show that: ①From 2000 to 2015, the urban-rural construction land expanded by 158.32km2 rapidly, the trend of annual gradient and dynamic degree were firstly increased and then decreased. In the same period, from the core area of the city to the far suburbs, the scale of expansion increased in turn, and the construction focus continues move towards to the urban periphery, which shows a spatial heterogeneity obviously. ②The area and proportion of urban construction land and independent industrial and mining land increased year by year, and the sources of expansion were mainly cultivated land. The proportions of rural residential areas decreased by 13.14% from 2000 to 2015, while the structural characteristics of urban-rural construction land changed significantly. ③From 2000 to 2015, the area and proportion of impervious surface in urban-rural construction land increased by 145.32 km2 and 10.04% respectively. The land use intensity of urban construction reached a high level, because of the land use intensity of rural residential areas increased rapidly, and the gap between urban and rural areas is narrowing. The proportion of impervious surface was decreasing continuously along the direction of the urban core area to the far suburbs, but the potential for development and utilization was greater in the same direction, because the increment, proportional increment, proportional growth rate and expansion intensity of impermeable surface area was generally increasing. In general, there is a similar trend between the area of impermeable surface and the scale of urban and rural construction land, which can reveal the urban expansion track to a certain extent.

Key words: Urban expansion process    Urban-rural construction land    Impervious surface    Remote sensing monitoring    Space-time pattern
收稿日期: 2019-09-17 出版日期: 2020-11-26
ZTFLH:  TP79  
基金资助: 东北农业大学“学术骨干”项目(16XG07);黑龙江省博士后科研启动金资助项目(LBH-Q17018)
通讯作者: 杜国明     E-mail: hebeiliumei@126.com;nmgdgm@126.com
作者简介: 刘美(1993-),女,河北衡水人,博士研究生,主要从事城乡发展与土地利用变化研究。E?mail:hebeiliumei@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘美
杜国明
于凤荣
匡文慧

引用本文:

刘美,杜国明,于凤荣,匡文慧. 哈尔滨城乡梯度建设用地结构变化及不透水面遥感监测分析[J]. 遥感技术与应用, 2020, 35(5): 1206-1217.

Mei Liu,Guoming Du,Fengrong Yu,Wenhui Kuang. Remote Sensing Monitoring and Analysis of Urban-Rural Gradient Construction Land and Impervious Surface in Harbin. Remote Sensing Technology and Application, 2020, 35(5): 1206-1217.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.5.1206        http://www.rsta.ac.cn/CN/Y2020/V35/I5/1206

图1  研究区地理位置及行政区划示意图
图2  研究区区位划分示意图
图3  2000~2015年城乡建设用地空间分布图
城乡建设用地变化指标2000~2015年2000~2005年2005~2010年2010~2015年
变化量/km2158.3241.4059.0657.86
年变化率/%2.511.972.552.22
动态度/%0.510.400.570.56
表1  2000~2015年哈尔滨市城乡建设用地规模变化
时间指标城市核心区城市边缘区城市近郊区城市远郊区
-区位面积/km258.59166.44302.181 334.97
2000年城乡建设用地面积/km258.59113.7687.44161.54
2005年58.59122.87102.46178.81
2010年58.59138.19123.18201.83
2015年58.59148.42141.41231.24
2000~2015年变化量/km2034.6653.9769.70
年变化率/%02.034.112.88
动态度/%01.431.280.36
表2  2000~2015年不同区位城乡建设用地变化
图4  不同阶段不同区位城乡建设用地变化
图5  2000-2015年不同类型城乡建设用地规模变化
图6  2000~2015年哈尔滨市不同类型城乡建设用地结构变化
图7  2000和2015年城乡建设用地内部不透水面比例分布图
时 间类 型城镇建设用地农村居民点用地独立工矿用地哈尔滨市
2000年不透水面面积/km2134.7573.7523.41231.91
城乡建设用地面积/km2206.26155.2059.88421.34
不透水面比例/%65.3347.5239.0955.04
2015年不透水面面积/km2236.2983.6957.26377.23
城乡建设用地面积/km2334.17137.30108.19579.66
不透水面比例/%70.7160.9552.9265.08
2000~2015年不透水面面积变化量/km2101.549.9333.85145.32
不透水面比例变化量/%5.3813.4313.8310.04
不透水面比例增长率/%8.2428.2635.3718.23
扩张强度/%0.360.900.920.67
表3  2000~2015年城乡建设用地内部不透水面比例情况统计表
区位2000年2015年2000年2015年2000~2015年

城乡建设用地内部

不透水面面积/km2

城乡建设用地内部

不透水面比例/%

不透水面面积

增加量/km2

不透水面比例

增加量/%

扩张

强度/%

不透水面比例增长率/%
城市核心区49.0949.2583.7984.060.160.270.020.32
城市边缘区66.32101.7058.3068.5235.3810.220.6817.53
城市近郊区43.9195.5550.2267.5751.6417.361.1634.56
城市远郊区75.24136.5146.5859.0461.2712.460.8326.75
表4  2000~2015年不同区位城乡建设用地内部不透水面面积及比例变化
1 Bai X M, Shi P J, Liu Y S. Realizing China’s Urban Dream[J]. Nature, 2014, 509(7499): 158-160.
2 Liu Cuiling, Long Ying. Urban Expan-sion Simulation and Analysis in the Beijing-Tianjin-Hebei Region[J]. Progress in Geography, 2015, 34(2): 217-228.
2 刘翠玲, 龙瀛. 京津冀地区城镇空间扩张模拟与分析[J]. 地理科学进展, 2015, 34(2): 217-228.
3 Zhu C M, Zhang X L, Wang K, et al. Urban-rural Construction Land Transition and Its Coupling Relationship with Population Flow in China's Urban Agglomeration Region[J]. Cities, 2020, 101: 102701.
4 Long H L, Liu Y S, Wu X Q, et al. Spatio-temporal Dynamic Patterns of Farmland and Rural Settlements in Su-Xi-Chang Region: Implications for Building a New Countryside in Coastal China[J]. Land Use Policy, 2009, 26 (2): 322-333.
5 Fu Jianxin, Cao Guangchao, Guo Wenjiong. Land Use Change and Its Driving Force on the Southern Slope of Qilian Mountains from 1980 to 2018[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2699-2709.
5 付建新, 曹广超, 郭文炯. 1980~2018年祁连山南坡土地利用变化及其驱动力[J]. 应用生态学报, 2020, 31(8): 2699-2709.
6 He Hong. Analysis of the Core Content and Path of Urban-rural Integration Development[J]. Agricultural Economy, 2018(2): 91-92.
6 何红. 城乡融合发展的核心内容与路径分析[J]. 农业经济, 2018(2): 91-92.
7 Liu W C, Liu J Y, Kuang W H, et al. Examining the Influence of the Implementation of Major Function-oriented Zones on Built-up Area Expansion in China[J]. Journal of Geographical Sciences, 2017, 27(6): 643-660.
8 Kuang Wenhui, Liu Jiyuan, Zhang Zengxiang, et al. Spatiotemporal Dynamics of Impervious Surface Areas Across China during the Early 21st Century[J]. Chinese Science Bulletin, 2013, 58(5-6): 465-478.
8 匡文慧, 刘纪远, 张增祥, 等. 21世纪初中国人工建设不透水地表遥感监测与时空分析[J]. 科学通报, 2013, 58(5-6): 465-478.
9 Jiang Qianzi, Wang Zhifang, Li Minghan. Negative Effects of Impervious Surface on Urban Water Environment and Mitigation Measures[J]. Urban Problems, 2014(11): 50-55.
9 姜芊孜, 王志芳, 李明翰. 不透水地表对城市水环境的负面影响及缓解措施[J]. 城市问题, 2014(11):50-55.
10 Chen Jun, Chen Lijun, Li Ran, et al. Spatial Distribution and Ten Years Change of Global Built-up Areas derived from GlobeLand30[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11): 1181-1188.
10 陈军, 陈利军, 李然, 等. 基于GlobeLand30的全球城乡建设用地空间分布与变化统计分析[J]. 测绘学报, 2015, 44(11): 1181-1188.
11 Li Miao, Zang Shuying, Wan Luhe, et al. Spatial-temporal Variation of Land Use in Rural-urban Continuum of Harbin City[J]. Science of Surveying and Mapping, 2018, 43(6): 52-57.
11 李苗, 臧淑英, 万鲁河, 等. 哈尔滨市城乡结合部土地利用时空变化[J]. 测绘科学, 2018, 43(6): 52-57.
12 Che Tong, Li Cheng, Luo Yunjian. Changes in Landscape Pattern of Built-up Land and Its Driving Factors during Urban Sprawl[J]. Acta Ecologica Sinica, 2020, 40(10): 3283-3294.
12 车通, 李成, 罗云建. 城市扩张过程中建设用地景观格局演变特征及其驱动力[J]. 生态学报, 2020, 40(10): 3283-3294.
13 Xiong Changsheng, Tan Rong, Yue Wenze. Discussion on Different Driving Factors of Diversified Construction Land Expansion in Rapid Urbanization Area:A Case Study of Yiwu City[J]. Journal of Natural Resources, 2018, 33(12): 2124-2135.
13 熊昌盛, 谭荣, 岳文泽. 快速城市化背景下不同建设用地扩张的驱动差异探讨: 以浙江省义乌市为例[J]. 自然资源学报, 2018, 33(12): 2124-2135.
14 Gu C L, Hu L Q, Ian G. Cook I G. China’s Urbanization in 1949~2015: Processes and Driving Forces[J]. Chinese Geographical Science, 2017, 27(6): 847-859.
15 Wang Xiaofeng, Fu Bojie, Su Changhong, et al. Spatio-temporal Characteristics and Driving Forces of Built-up Land in Xi'an, China[J]. Acta Ecologica Sinica,2015, 35(21): 7139-7149.
15 王晓峰, 傅伯杰, 苏常红, 等. 西安市城乡建设用地时空扩展及驱动因素[J]. 生态学报, 2015, 35(21): 7139-7149.
16 Du Guoming, Yin Jiadi, Zhang Yan, et al. Research of Urban-rural Residential Land Transition in Youyi County[J]. China Land Science, 2017, 31(7):60-66.
16 杜国明, 殷嘉迪, 张燕, 等. 友谊县城乡居民点用地转型研究[J]. 中国土地科学, 2017, 31(7):60-66.
17 Li Xiaoyan, Li Huiying, Man Weidong, et al. Process and Driving Factors of Urban Land Expansion in Harbin-Changchun City Cluster[J]. Scientia Geographica Sinica, 2018, 38(8): 1273-1282.
17 李晓燕, 李慧颖, 满卫东, 等. 哈长城市群城镇用地扩展进程及其驱动因素研究[J]. 地理科学, 2018, 38(8): 1273-1282.
18 Long Hualou. Rural Transformation and Land Use in China[M]. Beijing: Science Press, 2012.
18 龙花楼. 中国乡村转型发展与土地利用[M]. 北京:科学出版社, 2012.
19 Lü Xiao, Huang Xianjin, Zhang Quanjing. A Literature Review on Urban-rural Construction Land Transition[J]. City Planning Review, 2015, 39(4): 105-112.
19 吕晓, 黄贤金, 张全景. 城乡建设用地转型研究综述[J]. 城市规划, 2015, 39(4): 105-112.
20 Yang Y Y, Liu Y S, Li Y R, et al. Quantifying Spatio-temporal Patterns of Urban Expansion in Beijing during 1985-2013 with Rural-urban Development Transformation[J]. Land Use Policy, 2018, 74: 220-230.
21 Zhai Jun, Xiao Tong, Yang Min, et al. Characteristics of Impervious Surface Changes Across Coastal China[J]. Resources Science, 2016, 38(5): 814-824.
21 翟俊, 肖桐, 杨旻, 等. 中国沿海不透水地表变化特征分析[J]. 资源科学, 2016, 38(5): 814-824.
22 Pan Tao, Zhang Chi, Du Guoming, et al. Pattern of Impervious Surface Change and Its Effect on Land Surface Temperature in Urban and Rural Areas[J]. Journal of Geo-information Science, 2017, 19(1): 134-142.
22 潘涛, 张弛, 杜国明, 等. 城乡不透水面增长格局及地表温度的响应特征研究[J]. 地球信息科学学报, 2017, 19(1): 134-142.
23 Tan Chunyang, Kuang Wenhui, Xu Tianshu, et al. Analyzing Spatio-temporal Pattern of Impervious Surface for Recent Two Decades in Shanghai[J]. Journal of Geomatics, 2014, 39(3): 71-74.
23 谭春阳, 匡文慧, 徐天蜀, 等. 近20年上海市不透水地表时空格局分析[J]. 测绘地理信息, 2014, 39(3): 71-74.
24 Li Miao, Zang Shuying, Wu Changshan, et al. Spatial and Temporal Variation and Its Driving Forces of Urban Impervious Surface in Urban-Rural Continuum of Harbin[J]. Acta Geographica Sinica, 2017, 72(1): 105-115.
24 李苗, 臧淑英, 吴长山, 等. 哈尔滨市城乡结合部不透水面时空变化及驱动力分析[J]. 地理学报, 2017, 72(1):105-115.
25 Liu Fang, Yan Huimin, Liu Jiyuan, et al. Spatial Pattern of Land Use Intensity in China in 2000[J]. Acta Geographica Sinica, 2016, 71(7): 1130-1143.
25 刘芳, 闫慧敏, 刘纪远, 等. 21世纪初中国土地利用强度的空间分布格局[J]. 地理学报, 2016, 71(7): 1130-1143.
26 Liu Jiyuan, Ning Jia, Kuang Wenhui, et al. Spatio-temporal Patterns and Characteristics of Land-use Change in China during 2010~2015[J]. Acta Geographica Sinica, 2018, 73(5): 789-802.
26 刘纪远, 宁佳, 匡文慧, 等. 2010~2015年中国土地利用变化的时空格局与新特征[J]. 地理学报, 2018, 73(5): 789-802.
27 Kuang Wenhui, Chi Wenfeng, Shi Wenjiao. Spatio-temporal Characteristics of Intra-urban Land Cover in the Cities of China and USA from 1978 to 2010[J]. Acta Geographica Sinica, 2014, 69(7): 883-895.
27 匡文慧, 迟文峰, 史文娇. 中国与美国大都市区城市内部土地覆盖结构时空差异[J]. 地理学报, 2014, 69(7): 883-895.
28 Yang Huajie. Extraction and Analysis of Impervious Surface in Hangzhou based on Landsat Remote Sensing Data[D]. Hangzhou: Zhengjiang University, 2013.
28 杨华杰. 基于Landsat遥感数据的杭州不透水地面提取与分析[D]. 杭州: 浙江大学, 2013.
29 Liu Tao, Cao Guangzhong. Progress in Urban Land Expansion and Its Driving Forces[J]. Progress in Geography, 2010, 29(8): 927-934.
29 刘涛, 曹广忠. 城市用地扩张及驱动力研究进展[J]. 地理科学进展, 2010, 29(8): 927-934.
30 He Zhen, Zhao Wenliang, He Junping. Remote Sensing Monitoring of Urban Sprawl based on Object-oriented and Driving Forces Analysis: A Case Study of Zhengzhou City[J]. Geographical Research, 2011, 30(12): 2272-2280.
30 贺振, 赵文亮, 贺俊平. 郑州市城市扩张遥感动态监测及驱动力分析[J]. 地理研究, 2011, 30(12): 2272-2280.
31 Wang Meiya, Xu Hanqiu, Li Xia, et al. Analysis on Spatiotemporal Variation of Urban Impervious Surface and Its Influence on Urban Thermal Environment: Fuzhou City, China[J]. Journal of Basic Science and Engineering, 2018, 26(6): 1316-1326.
31 王美雅, 徐涵秋, 李霞, 等. 不透水面时空变化及其对城市热环境影响的定量分析—以福州市建成区为例[J]. 应用基础与工程科学学报, 2018, 26(6): 1316-1326.
32 Gao Shaoxin, Chen Jian, Zheng Kaiduan, et al. Extraction and Change Monitoring of Multi-temporal Impervious Surface in Yangtze River Delta Region based on Remote Sensing[J]. Bulletin of Science and Technology, 2018, 34(10):80-85,92.
32 高绍鑫, 陈健, 郑凯端, 等. 长三角地区不透水面多时相遥感提取及变化监测[J].科技通报,2018,34(10):80-85,92.
33 Li Zhi, Li Peng, Liu Qiang. Study on a Model of Water Surface Growth and Its Driving Factors in Large Cities Along the Middle Reaches of the Yangtze River[J]. Acta Ecologica Sinica, 2018, 38(11): 3766-3774.
33 李志, 李鹏, 刘强. 长江中游大城市不透水面增长模式及其驱动因素[J]. 生态学报, 2018, 38(11): 3766-3774.
34 Yu Qi. Influence of Impervious Surface Expansion on Surface Runoff in Guangzhou[D]. Guangzhou: Guangzhou University, 2018.
34 余琪. 广州市不透水面扩张对地表径流的影响研究[D]. 广州:广州大学, 2018.
[1] 沈谦,朱长明,张新,黄巧华,杨程子. 1992~2013我国干旱区城市不透水遥感制图与扩张过程分析[J]. 遥感技术与应用, 2020, 35(5): 1178-1186.
[2] 李智礼,匡文慧,张澍. 近70 a天津主城区城市土地利用/覆盖变化遥感监测与时空分析[J]. 遥感技术与应用, 2020, 35(3): 527-536.
[3] 陈馨,匡文慧. 基于云平台的中哈干旱区典型城市地表覆盖变化遥感监测与比较[J]. 遥感技术与应用, 2020, 35(3): 548-557.
[4] 寇勇,王宁练,陈安安,刘凯. 1993~2016年喜马拉雅山西段杰纳布流域冰川变化遥感监测[J]. 遥感技术与应用, 2020, 35(3): 712-722.
[5] 鲁军景, 孙雷刚, 黄文江.  作物病虫害遥感监测和预测预警研究进展[J]. 遥感技术与应用, 2019, 34(1): 21-32.
[6] 高宁, 盖迎春, 宋晓谕. 基于夜间灯光数据的西安市城市扩张及驱动因素研究[J]. 遥感技术与应用, 2019, 34(1): 207-215.
[7] 白贺庭, 马明国, 阎然, 刘康甯, 隽楚涵. 基于夜间灯光数据的重庆市城市扩张研究[J]. 遥感技术与应用, 2019, 34(1): 216-224.
[8] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[9] 王帅,徐涵秋,唐菲. 基于IBI和CA模型的城市建成区提取及其应用——以上海市为例[J]. 遥感技术与应用, 2017, 32(6): 1161-1170.
[10] 王苏芸,孙中昶,郭华东,申维. 基于面向对象的东营市城乡建设用地信息提取[J]. 遥感技术与应用, 2017, 32(4): 780-786.
[11] 胡根生,吴问天,黄文江,梁栋,黄林生. 粒子群优化的最小二乘支持向量机在小麦白粉病监测中的应用[J]. 遥感技术与应用, 2017, 32(2): 299-304.
[12] 周春艳,厉青,张丽娟,马鹏飞,陈辉,王中挺. 遥感监测2005~2015年中国NO2时空特征及分析影响因素[J]. 遥感技术与应用, 2016, 31(6): 1190-1200.
[13] 张永宏,任伟,曹庭,田伟,王剑庚,卢晶. FY-3/VIRR资料积雪多阈值综合判识方法研究[J]. 遥感技术与应用, 2015, 30(6): 1076-1084.
[14] 唐志光,王建,梁继,李朝奎,王欣. 基于MODIS的青藏高原雪线高度遥感监测[J]. 遥感技术与应用, 2015, 30(4): 767-774.
[15] 郑高强,陈芸芝,汪小钦,陈曦. 基于HJ-1卫星CCD数据的厦门海域叶绿素a浓度反演[J]. 遥感技术与应用, 2015, 30(2): 235-241.