Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (5): 1218-1225    DOI: 10.11873/j.issn.1004-0323.2020.5.1218
遥感应用     
土地利用变化下北京市热通量的时空演变
郭梦辉1,2(),季亚南3,柯樱海3,陈少辉1()
1.中国科学院地理科学与资源研究所 陆地水循环及地表过程重点实验室,北京 100101
2.中国科学院大学,北京 100049
3.首都师范大学 资源环境与旅游学院,北京 100048
Temporal and Spatial Evolvement of Heat Flux in Beijing Under Land Use Change
Menghui Guo1,2(),Ya'nan Ji3,Yinghai Ke3,Shaohui Chen1()
1.Key laboratory of Water Cycle and Related Land Surface Processes,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
3.College of Resource Environment and Tourism,Capital Normal University,Beijing 100048,China
 全文: PDF(4102 KB)   HTML
摘要:

探究土地利用变化对城市热通量的影响,对城市用地规划和城市热岛缓解具有重要指导意义。利用混合像元组分排序对比和分层能量切割方法,通过Landsat系列数据反演的地表参数,结合气象再分析资料,估算了2004、2009、2014和2017年4期9月份的北京市地表瞬时热通量,依据同期的北京市土地利用图,分析了北京市热通量随土地利用变化的时空演变。结果表明:①北京市地表温度和热通量分布具有明显的空间异质性,山区和平原、平原不同土地利用类型之间差异明显;②在不同时期,土地利用类型间的地表温度和热通量的高低次序具有一致性,瞬时潜热通量,林地最高,为347.85~546.95 W/m2,其次为耕地、草地,建设用地最小,为225.23~349.03 W/m2,感热通量和地表温度则相反,建筑用地最高,分别为94.06~189.28 W/m2和25.18~32.25 ℃,耕地和草地次之,水体的最低,分别为28.15~102.55 W/m2和19.25~28.38 ℃;③土地利用类型转变引起的城市热通量变化方面,自然表面转为建设用地时,潜热通量急剧减少,感热通量增加,城区周边耕地的潜热通量受城市热辐射影响而增加,城市绿地能有效缓解城市热岛效应。

关键词: 城市热通量潜热通量感热通量土地利用/土地变化遥感蒸散模型    
Abstract:

Exploring the impact of land use change on urban heat flux has important significance for urban land use planning and urban heat island mitigation. Using the pixel component arranging comparing algorithm, four Beijing surface instantaneous heat fluxes in Septembers of 2004, 2009, 2014 and 2017 are estimated by the surface parameters retrieved from Landsat series data and meteorological reanalysis data, and the spatiotemporal variation of heat fluxes in Beijing is analyzed with the change of land uses during the same period. Results show: (1) the distribution of surface temperature and heat flux in Beijing has obvious spatial heterogeneity, and the difference between mountainous areas and plains and among different land use types in plains is obvious; (2) the order of surface temperatures or heat fluxes between different land use types has consistency at these four moments. For latent heat flux, the highest is 347.85~546.95 W/m2 for forest land, followed by cultivated land and grassland, and the minimum is 225.23~349.03 W/m2 for construction land. For sensible heat flux and surface temperature, the order is reversed, the highest for construction land is 94.06~189.28 W/m2 and 25.18~32.25 ℃, followed by cultivated land and grassland, the lowest is 28.15~102.55 W/m2 and 19.25~28.38 ℃ for water body; (3) in terms of change in urban heat fluxes caused by land use transformation, when natural surface is converted to construction land, latent heat flux is reduced and sensible heat flux increases. The latent heat flux of the arable land around the city is increased by the influence of urban heat radiation, and the urban green space can effectively alleviate urban heat island effect.

Key words: Urban heat flux    Latent heat flux    Sensible heat flux    Land use and change    Remote sensing ET model
收稿日期: 2018-08-02 出版日期: 2020-11-26
ZTFLH:  TP79  
基金资助: 国家对地观测科学数据中心开放基金(DAOP2020003);第二次青藏高原综合科学考察研究(2019QZKK1003);国家自然科学基金(41671368)
通讯作者: 陈少辉     E-mail: 1713051786@qq.com;chensh@igsnrr.ac.cn
作者简介: 郭梦辉(1993—),女,山东济宁人,硕士研究生,主要从事城市遥感研究。E?mail: 1713051786@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭梦辉
季亚南
柯樱海
陈少辉

引用本文:

郭梦辉,季亚南,柯樱海,陈少辉. 土地利用变化下北京市热通量的时空演变[J]. 遥感技术与应用, 2020, 35(5): 1218-1225.

Menghui Guo,Ya'nan Ji,Yinghai Ke,Shaohui Chen. Temporal and Spatial Evolvement of Heat Flux in Beijing Under Land Use Change. Remote Sensing Technology and Application, 2020, 35(5): 1218-1225.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.5.1218        http://www.rsta.ac.cn/CN/Y2020/V35/I5/1218

图1  北京市高程图及气象通量观测站点
年份τλLL
20040.890.841.44
20090.890.821.38
20140.851.222.06
20170.960.270.48
表1  2004、2009、2014和2017年的大气剖面参数
通量(单位:W/m2)RnLEHG
大兴观测值476.07234.26209.3933.62
估算值480.57267.17153.6159.86
密云观测值521.20256.99212.9729.07
估算值485.63261.69170.2053.74
RMSE23.3594.0458.6025.47
表2  热通量验证
图2  地表温度和植被覆盖度验证
图3  2014年地表温度和热通量空间分布图
图4  不同土地利用类型地表温度和热通量统计数据
图5  不同土地利用类型热通量对比(LE是潜热通量,H是感热通量,G是土壤热通量,β是波文比)
图6  土地利用变化下的潜热通量变化分析
1 Qiao K, Zhu W Q, Hu D Y, et al. Examining the Distribution and Dynamics of Impervious Surface in Different Function Zones in Beijing[J]. Journal of Geographical Sciences, 2018, 28(5): 669-684.
2 Zheng Z F,Ren G Y,Wang H,et al. Relationship between Fine-Particle Pollution and The Urban Heat Island in Beijing, China: Observational Evidence[J]. Boundary-Layer Meteorology, 2018, 169(1): 93-113.
3 Hao P Y,Niu Z,Zhan Y L,et al. Spatiotemporal Changes of Urban Impervious Surface Area and Land Surface Temperature in Beijing from 1990 to 2014[J]. GIScience & Remote Sensing, 2015, 53(1): 63-84.
4 Qiao Zhi, Sun Zongyao, Sun Xihua, et al. Prediction and Analysis of Urban Thermal Environment Risk and Its Spatio-Temporal Pattern[J].Acta Ecologica Sinica, 2019, 39(2): 649-659.
4 乔治, 孙宗耀, 孙希华, 等.城市热环境风险预测及时空格局分析[J]. 生态学报, 2019, 39(2):649-659.
5 Zhao Hengqian, Jia Liang, Yin Zhengran, et al. Dynamic Monitoring of Land Use and Ecological Environment based on Multiple Remote Sensing Data: A Case Study of Tongzhou District, Beijing[J]. Geography and Geo-information Science, 2019, 35(1): 38-44.
5 赵恒谦, 贾梁, 尹政然, 等. 基于多源遥感数据的北京市通州区土地利用/覆盖与生态环境变化监测研究[J]. 地理与地理信息科学, 2019, 35(1):38-44.
6 Yang Hao, Meng Na,Wang Jing, et al. Spatial-Temporal Morphology Simulation of Beijing-Tianjin-Hebei Urban Agglomeration Thermal Environment based on Support Vector Machine[J]. Journal of Geo-information Science, 2019, 21(2):190-200.
6 杨浩, 孟娜, 王婧, 等. 基于支持向量机的京津冀城市群热环境时空形态模拟[J]. 地球信息科学学报, 2019, 21(2): 190-200.
7 Kuang W H,Dou Y Y,Zhang C,et al. Quantifying the Heat Flux Regulation of Metropolitan Land Use/Land Cover Components by Coupling Remote Sensing Modeling with In Situ Measurement[J]. Journal of Geophysical Research-Atmospheres, 2015, 120(1): 113-130.
8 Zhao G S, Dong J W, Cui Y P, et al. Evapotranspiration-dominated Biogeophysical Warming Effect of Urbanization in the Beijing-Tianjin-Hebei Region, China[J]. Climate Dynamics, 2019, 52(1-2): 1231-1245.
9 Kuang W H,Yang T R,Liu A L,et al. An EcoCity Model for Regulating Urban Land Cover Structure and Thermal Environment:Taking Beijing as an Example[J]. Science China: Earth Sciences, 2017,47(7): 847-859.
9 匡文慧,杨天荣,刘爱琳,等. 城市地表覆盖结构组分与热环境调控模型(EcoCity)研究—以北京城市为例[J]. 中国科学: 地球科学, 2017, 47(7): 847-859.
10 Shahid N,Cao C X, Khunsa F,et al. Landscape Greening Policies-based Land Use/ Land Cover Simulation for Beijing and Islamabad—An Implication of Sustainable Urban Ecosystems[J]. Sustainability, 2018,10(4): 1049. doi:10.3390/SU1004 1049.
doi: 10.3390/SU1004 1049
11 Cui Y P,Liu J Y,Hu Y F,et al. Modeling the Radiation Balance of Different Urban Underlying Surfaces[J]. Chinese Science Bulletin, 2012, 57(9): 1046-1054.
12 Chen S H,Su H B,Zhan J Y. Estimating the Impact of Land Use Change on Surface Energy Partition based on the Noah Model[J]. Frontiers of Earth Science, 2014, 8(1): 18-31.
13 Bastiaanssen W G M,Menenti M,Feddes R A,et al. The Surface Energy Balance Algorithm for Land (SEBAL): Part 1 Formulation[J]. Journal of Hydrology, 1998, 212(98): 801-811.
14 Su Z. The Surface Energy Balance System (SEBS) for Estimation of Turbulent Heat Fluxes[J]. Hydrology & Earth System Sciences, 2002, 6(1): 85-99.
15 Di S C, Li Z L, Tang R L, et al. Urban Green Space Classi-fication and Water Consumption Analysis with Remote-sen-sing Technology: A Case Study in Beijing, China[J]. International Journal of Remote Sensing, 2018, 40(5-6): 1909-1929.
16 Moran M S,Clarke T R,Inoue Y,et al. Estimating Crop Water Deficit Using the Relation between Surface-air Temperature and Spectral Vegetation Index[J]. Remote Sensing of Environment, 1994, 49(3): 246-263.
17 Zhang Renhua, Sun Xiaomin, Wang Weimin, et al.An Operational Two-layer Remote Sensing Model to Estimate Ssurface Flux in Regional Scale:Physical Background[J]. Science China: Earth Sciences, 2004, 34(S2): 200-216.
17 张仁华,孙晓敏,王伟民,等. 一种可操作的区域尺度地表通量定量遥感二层模型的物理基础[J].中国科学:地球科学,2004,34(): 200-216.
18 Tang Ronglin. Retrieval of Land Surface Evapotranspiration from Remotely Sensed Surface Temperature-Fractional Vegetation Cover Characteristic Space[D]. Beijing: University of Chinese Academy of Sciences, 2011.
18 唐荣林. 基于地表温度-植被覆盖度特征空间的地表蒸散发遥感反演方法研究[D]. 北京: 中国科学院大学, 2011.
19 Kuang W H. Simulating Dynamic Urban Expansion at Regional Scale in Beijing-Tianjin-Tangshan Metropolitan Area[J]. Journal of Geographical Sciences, 2011, 21(2): 317-330.
20 Kuang W H, Liu J Y, Zhang Z X, et al. Spatiotemporal Dynamics of Impervious Surface Areas Across China during the Early 21st Century[J]. Science Bulletin, 2013, 58(14): 1691-1701.
21 Kuang W H. Spatio-temporal Patterns of Intra-urban Land Use Change in Beijing, China between 1984 and 2008[J]. Chinese Geographical Science, 2012, 22(2): 210-220.
22 Ke X L, Zhan J Y, Ma E J, et al. Regional Climate Impacts of Future Urbanization in China[M]. Berlin: Springer, 2014.
23 Alan G, Shuichi R, Tsuneo M,et al. A Temperature and Emissivity Separation Algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2002, 36(4): 1113-1126.
24 Qin Z H,Li W J,Xu B,et al. The Estimation of Land Surface Emissivity for Landsat TM6[J]. Remote Sensing for Land & Resources, 2004,16(3):28-32.
24 覃志豪,李文娟,徐斌,等. 陆地卫星TM6波段范围内地表比辐射率的估计[J]. 国土资源遥感, 2004, 16(3): 28-32.
25 Liang S L. Narrowband to Broadband Conversions of Land Surface Albedo I : Algorithms[J]. Remote Sensing of Environment, 2001, 76(2): 213-238.
26 Bernardo B Da Silva,Braga Alexandra C,Braga Célia C,et al. Procedures for Calculation of the Albedo with OLI-Landsat 8 Images: Application to the Brazilian Semi-arid[J]. Revista Brasileira de Engenharia Agrícola e Ambiental - Agriambi, 2016, 20(1): 3-8.
[1] 刘美,杜国明,于凤荣,匡文慧. 哈尔滨城乡梯度建设用地结构变化及不透水面遥感监测分析[J]. 遥感技术与应用, 2020, 35(5): 1206-1217.
[2] 沈谦,朱长明,张新,黄巧华,杨程子. 1992~2013我国干旱区城市不透水遥感制图与扩张过程分析[J]. 遥感技术与应用, 2020, 35(5): 1178-1186.
[3] 夏炎,黄亮,王枭轩,陈朋弟. 基于无人机影像的烟草精细提取[J]. 遥感技术与应用, 2020, 35(5): 1158-1166.
[4] 尹春涛,谢文扬,王奇,刘磊,孟刚刚. 甘肃北山白峡尼山地区多源遥感岩性制图研究[J]. 遥感技术与应用, 2020, 35(5): 1146-1157.
[5] 牟昱璇,邬明权,牛铮,黄文江,杨尽. 南方地区复杂条件下的耕地面积遥感提取方法[J]. 遥感技术与应用, 2020, 35(5): 1127-1135.
[6] 郑琪,邸苏闯,潘兴瑶,刘洪禄,朱永华,张岑,周星. 基于Rapid Eye数据的北京生态涵养区土地利用分类及变化研究[J]. 遥感技术与应用, 2020, 35(5): 1118-1126.
[7] 殷针针,陈方,林政阳,杨阿强,李斌. 基于FY-3D MERSI数据的火点识别方法研究[J]. 遥感技术与应用, 2020, 35(5): 1099-1108.
[8] 王一帆,徐涵秋. 基于客观阈值与随机森林Gini指标的水体遥感指数对比[J]. 遥感技术与应用, 2020, 35(5): 1089-1098.
[9] 符海月,钱志友,张祎婷,王昭雅,洪娜娜. 基于多尺度的南京市城市用地分布空间决定因素[J]. 遥感技术与应用, 2020, 35(5): 1079-1088.
[10] 胡月童,武爽,冯险峰,刘洋. 面向遥感叶面积指数产品的地形校正研究[J]. 遥感技术与应用, 2020, 35(5): 1070-1078.
[11] 薛华柱,王昶景,周红敏,王锦地,万华伟. 基于模拟退火算法的BP神经网络模型估算高分辨率叶面积指数[J]. 遥感技术与应用, 2020, 35(5): 1057-1069.
[12] 郭利彪,刘桂香,运向军,张勇,孙世贤. 基于数据机理的植被叶面积指数遥感反演研究[J]. 遥感技术与应用, 2020, 35(5): 1047-1056.
[13] 刘刚,桑宇星,赵茜,江聪,朱再春. 生态系统模型模拟中国叶面积指数变化趋势及驱动因子的不确定性[J]. 遥感技术与应用, 2020, 35(5): 1037-1046.
[14] 桑宇星,刘刚,江聪,任舒艳,朱再春. 近30 a中国叶面积指数变化趋势的不确定性评估[J]. 遥感技术与应用, 2020, 35(5): 1028-1036.
[15] 牟昱璇 邬明权 牛铮 黄文江 杨尽. 南方地区复杂条件下的耕地面积遥感提取方法[J]. 遥感技术与应用, 0, (): 0-0.