Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (1): 187-197    DOI: 10.11873/j.issn.1004-0323.2021.1.0187
遥感应用     
遥感干旱指数在洛川苹果干旱监测中的适用性分析
张茂1,2(),张霞1(),胡光成1,王楠1
1.中国科学院遥感与数字地球研究所,北京 100101
2.中国科学院大学,北京 100049
Applicability Analysis of Remote Sensing based Drought Indices in Drought Monitoring of Apple in Luochuan
Mao Zhang1,2(),Xia Zhang1(),Guangcheng Hu1,Nan Wang1
1.Institute of Remote Sensing and Digital Earth,Chinese Acadamy of Sciences,Beijing 100101,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
 全文: PDF(5048 KB)   HTML
摘要:

目前对苹果干旱研究较少且主要运用站点数据,对空间信息表征有限,遥感干旱指数可用于大范围干旱时空动态监测,但在苹果干旱监测中的适用性还有待研究。基于2014~2018年MODIS反射率、地表温度以及地表覆被数据,结合土壤湿度数据和野外调查资料,分析洛川苹果区温度植被干旱指数(TVDI)、归一化植被水分指数(NDWI)、植被供水指数(VSWI)与10 cm深度土壤湿度(SM)的一致性,探索遥感干旱指标对土壤干湿状况表征能力,并进一步研究遥感干旱指标对干旱响应敏感时段。结果表明:①由增强型植被指数(EVI)计算的VSWI与SM的时空一致性最好,其在2014、2017年表现出的干旱特征与实际旱情相符;②VSWI(EVI)和TVDI(EVI)与SM的相关性分别高于VSWI(NDVI)和TVDI(NDVI)与SM的相关性,使用EVI能提高VSWI和TVDI对干旱的表征能力;③TVDI、NDWI、VSWI对SM存在不同时间的反应滞后,滞后3时相(24 d)的VSWI(EVI)与SM的相关性最高,而NDWI对SM滞后时间短,对干旱响应较及时,结合VSWI(EVI)和NDWI可能更有利于监测苹果干旱;④在不同苹果生育期,遥感指标对土壤湿度敏感性不同,VSWI在不同生育期敏感性差异最明显:新梢旺长期(5、6月)对土壤湿度敏感性高于萌芽开花期、果实膨大期、成熟期;该结果符合洛川县苹果不同生育期需水规律和洛川降水、干旱发生特征。研究结果可为遥感监测苹果干旱提供参考依据。

关键词: 苹果遥感干旱指标土壤湿度一致性分析    
Abstract:

Drought monitoring for apple is essential and rarely reported. Furthermore, most of studies on apple drought monitoring are based on station observations, which cannot adequately represent the spatial information. Remote sensing based drought indices can be used for spatial and temporal dynamic drought monitoring, but its applicability in apple remains to be researched. Based on the MODIS reflectance, land surface temperature and land cover data from 2014 to 2018, combined with soil moisture data and field survey, the consistency of the Temperature Vegetation Dryness Index(TVDI), Normalized Difference Water Index(NDWI), vegetation supply Water Index of apple with Soil Moisture(SM) at 10 cm were analyzed to explore the ability of remote sensing based drought indices in characterizing drought conditions. Then,the sensitive period of drought indices to SM was further researched. The results indicated that VSWI calculated by EVI (recorded as VSWI(EVI))had the best temporal and spatial consistency with SM, and its performance in drought monitoring in 2014 and 2017 were consistent with the actual drought.The correlation between VSWI(EVI),TVDI(EVI) and SM were higher than those of VSWI (NDVI) and TVDI (NDVI) respectively, which demonstrated that EVI can improve the characterization ability of VSWI and TVDI for drought. TVDI,NDWI,VSWI had a delay in response to SM. VSWI (EVI) with lag 24 days had the highest correlation with SM, while NDWI had timely response to SM. Therefore, combined with VSWI (EVI) and NDWI may be more conducive to monitoring drought of apple.In different growth stages, drought indices had different sensitivity to soil moisture, and VSWI has the most obvious sensitivity difference in different growth stages. At new Shoots 'vigorous Growing period (may to june),drought indices are more sensitive than that of budding and flowering, fruit expansion and maturity stages. The research results can provide a reference for monitoring drought of apple by remote sensing method.

Key words: Apple    Remote sensing based drought indices    Soil moisture    Consistency analysis
收稿日期: 2019-09-19 出版日期: 2021-04-13
ZTFLH:  TP79  
基金资助: 重大自然灾害监测预警与防范重点专项(2017YFC1502802)
通讯作者: 张霞     E-mail: zhangmao1661@163.com;zhangxia@radi.ac.cn
作者简介: 张茂(1994-),女,四川宜宾人,硕士研究生,主要从事农业遥感、干旱监测方面的研究。E?mail:zhangmao1661@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张茂
张霞
胡光成
王楠

引用本文:

张茂,张霞,胡光成,王楠. 遥感干旱指数在洛川苹果干旱监测中的适用性分析[J]. 遥感技术与应用, 2021, 36(1): 187-197.

Mao Zhang,Xia Zhang,Guangcheng Hu,Nan Wang. Applicability Analysis of Remote Sensing based Drought Indices in Drought Monitoring of Apple in Luochuan. Remote Sensing Technology and Application, 2021, 36(1): 187-197.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.1.0187        http://www.rsta.ac.cn/CN/Y2021/V36/I1/187

图1  洛川县在陕西省的位置及苹果调查样点分布
图2  MODIS 2014年第217天剔除无效值及地表温度影像.
图3  NDVI-LST特征空间[34]
图4  2014~2016年遥感干旱指数NDWI、VSWI、TVDI与SM变化趋势(r为相关系数,“*”和“**”分别代表0.05和0.01的显著性水平)
图5  2014~2018洛川县气温、降水变化
图6  2014年3~10月洛川县VSWI、SM和NDWI空间分布
遥感干旱指数2014年2015年2016年
012301230123
NDWI0.69**0.54*0.41**0.310.68**0.58**0.62*0.54**0.740.68**0.71**0.73**
VSWI(NDVI)0.300.58*0.52**0.46**0.72*0.73*0.74*0.75*0.60**0.74**0.74**0.77*
VSWI(EVI)0.50.56*0.590.51**0.71**0.710.83**0.87**0.69*0.71*0.83**0.85**
TVDI(NDVI)-0.14-0.56**-0.39-0.21**-0.18*-0.42**-0.34**-0.4*-0.28-0.48*-0.33*-0.36
TVDI(EVI)-0.27-0.67**-0.55*-0.43*-0.28-0.39**-0.27*-0.33*-0.48*-0.6**-0.56-0.59**
表1  2014~2016年洛川县苹果滞后不同时相遥感干旱指数与土壤湿度相关系数
图7  2014、2017~2018 年VSWI(EVI)变化曲线
图8  2014~2016年不同生育期遥感干旱指标与SM相关关系矩阵图
1 Liu Mengqi, Zhao Junxi. Export Status, Competitiveness and Promotion, Case of Human Products in China[J]. Chinese Food and Nutrition, 2018,24(6):48-52.
1 刘梦琪, 赵俊晔. 中国苹果产品出口现状、竞争力分析及提升对策[J]. 中国食物与营养, 2018,24(6):48-52.
2 Wang Yanping, Han Mingyu, Zhang Linsen, et al. Variation Characteristics of Soil Moisture in Apple Orchards of Luochuan County,Shaanxi Province of Northwest China [J]. Chinese Journal of Applied Ecology, 2012, 23(3): 731-738.
2 王延平, 韩明玉, 张林森, 等. 洛川苹果园土壤水分变化特征[J]. 应用生态学报, 2012, 23(3):731-738.
3 Li Tianxing, Cao Hongxia, Chen Hongwu, et al. Analyses of Water Saving Irrigation Scheduling for Apple in Weibei Dryland Gully[J]. Agriculture Research in the Arid Areas, 2016, 34(5): 255-261.
3 李天星,曹红霞,陈红武,等. 渭北旱塬沟壑区苹果节水灌溉制度分析[J]. 干旱地区农业研究, 2016, 34(5):255-261.
4 Wang Xianzhi, Zhao Xining, Gao Xiaodong, et al. Simulation on Soil Moisture and Water Productivity of Apple Orchard on the Loess Plateau, Northwest China[J]. Chinese Journal of AppliedEcology,2020,11(30):1-12.
4 https://doi.org/10.13287/j.10019332.202101.012王宪志,赵西宁,高晓东,等.黄土高原苹果园土壤水分及水分生产力模拟[J].应用生态学报,2020,11(30):1-12.
5 Zhao Zhiyuan, Zheng Wei, Liu Jie, et al. Soil Moisture Variation Under Different Water and Fertilization Managements in Apple Orchard of Weibei Dryland,China[J].Chinese Journal of Applied Ecology, 2018, 29(4):1249-1258.
5 赵志远, 郑伟, 刘杰,等. 渭北旱塬苹果园不同水肥管理模式下的土壤水分差异[J]. 应用生态学报, 2018, 29(4):1249-1258.
6 Xue Xinping, Liu Jie. Effects of Water Stress on Physiological Characteristics of Apple Seedlings[J]. Northern Horticulture, 2017(20): 72-76.
6 薛新平, 刘洁. 水分胁迫对苹果幼苗生理特性的影响[J]. 北方园艺, 2017(20):72-76.
7 Wang Yuanji. Effect of Drought on Apple Quality and Its Relationship with Sugar Metabolism [D]. Yanglin:Northwest A&F University, 2017.
7 王元基. 干旱对苹果品质的影响及其与糖代谢的关系[D].杨凌:西北农林科技大学, 2017.
8 Sun X P. Growth, Gas exchange, and Water-use Efficiency Response of Two Young Apple Cultivars to Drought Stress in Two Scion-one Rootstock Grafting System[J]. Photosynthetica, 2013, 51(3):404-410.
9 Gao M W, Nie P X, Sun Y, et al. Response of Water Status Indicators in Apple Saplings to Drought Stress Under Shelter from Rain[J]. Chinese Journal of Applied Ecology, 2016, 27(8):2459-2466.
10 Liu B, Li M, Liang C, et al. Influence of Rootstock on Antioxidant System in Leaves and Roots of Young Apple Trees in Response to Drought Stress[J]. Plant Growth Regulation, 2012, 67(3):247-256.
11 Zhao Gang, Fan Tinglu, Li Shangzhong, et al. Soil Moisture Dynamics of Apple Orchards in Loess Plateau[J]. Chinese Journal of Applied Ecology, 2015, 26(4): 1199-1204.
11 赵刚, 樊廷录, 李尚中,等. 黄土旱塬区苹果园土壤水分动态[J]. 应用生态学报, 2015, 26(4):1199-1204.
12 Wang Jinghong, Bai Qinfeng, Liang Wei, et al. Apple Drought Index and Apple Drought Risk Distribution in Shaanxi at County Level [J]. Meteorological Science and Technology, 2014, 42(3): 516-523.
12 王景红, 柏秦凤, 梁轶, 等. 陕西苹果干旱指数研究及基于县域单元的苹果干旱风险分布[J]. 气象科技, 2014, 42(3):516-523.
13 Wang Jinghong, Zhang Yong, Liu Lu. Drought Analysis based on Multi-scale Standardized Precipitation of Apple Production Areas in Shaanxi Province[J]. Meteorology, 2013, 39(12): 1656-1662.
13 王景红, 张勇, 刘璐. 基于多尺度标准化降水指数的陕西苹果主产区气象干旱分析[J]. 气象, 2013, 39(12):1656-1662.
14 Wang Xinghan, Liu Chaoqun, Cong Peitong, et al. Remote Sensing Monitoring of Agricultural Drought based on Enhanced Temperature Vegetation Index[J]. Arid Area Resources and Environment, 2018,32(5):165-170.
14 王行汉, 刘超群, 丛沛桐, 等. 基于增强温度植被指数的农业旱情遥感监测[J]. 干旱区资源与环境, 2018,32(5):165-170.
15 Du L, Song N, Liu K, et al. Comparison of Two Simulation Methods of the Temperature Vegetation Dryness Index (TVDI) for Drought Monitoring in Semi-arid Regions of China[J].Remote Sensing,2017,9(2):177.doi:10.3390/rs9020177.
doi: 10.3390/rs9020177
16 Luo Biao, Liu Xiao, Guo Ping. Remote Sensing Drought Monitoring of Hetao Irrigation Area based MODIS Data[J]. Journal of China Agricultural University,2020,25(10):44-54.
16 罗彪,刘潇,郭萍.基于MODIS数据的河套灌区遥感干旱监测[J].中国农业大学学报,2020,25(10):44-54.
17 Huang H, Fan Y, Yang S, et al. Study on Agricultural Drought Monitoring based on Multi-sources Remote Sensing Data[J]. Sensor Letters, 2014, 12(3):659-666.
18 Bo Y, Su M, Jing L, et al. Agricultural Drought Monitoring in Dongting Lake basin by MODIS data[C]// First International Conference on Agro-geoinformatics. Shanghai, China. IEEE, 2012.
19 Wang Junxia, Zhu Xiufang, Liu Xianfeng, et al. Research on Agriculture Drought Monitoring Method of Henan Province with Multi-sources Data[J]. Remote Sensing for Land and Resources, 2018, 30(1): 180-186.
19 王俊霞, 朱秀芳,刘宪锋,等. 基于多源遥感数据的旱情评价研究——以河南省为例[J]. 国土资源遥感, 2018, 30(1):180-186.
20 Hao S, Xiang Z, Chen Y, et al. A New Agricultural Drought Monitoring Index Combining MODIS NDWI and Day-night Land Surface Temperatures: A Case Study in China[J]. International Journal of Remote Sensing, 2013, 34(24):8986-9001.
21 Liu X L, Qin Z H. Comparative Analysis between NDWI and NDVI Indices in Regional Drought Monitoring[J]. Remote Sensing Technology & Application, 2007, 22(5):608-612.
22 Li S, Wang F, Wu Q. Drought Monitoring by Remote Sensing in Winter-wheat-growing Area of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1):243-249.
23 Sun Li, Wang Fei, Wu Quan. Drought Monitoring by Remote Sensing in Winter-wheat-growing Area of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1):243-249.
23 孙丽, 王飞, 吴全. 干旱遥感监测模型在中国冬小麦区的应用[J]. 农业工程学报, 2010, 26(1):243-249.
24 Yao Yuan, Chen Wei, Qian Jing. Advance in Agricultural Drought Monitoring Using Remote Sensing Data[J]. Spectroscopy and Spectral Analysis, 2019, 39(4): 1005-1012.
24 姚远,陈曦,钱静. 遥感数据在农业旱情监测中的应用研究进展[J]. 光谱学与光谱分析, 2019, 39(4):1005-1012.
25 Zhou Qingbo, Liu Jia, Wang Limin, et al. A Current Situation and Prospect Analysis of the Application of EOS-MODIS Satellite Data in Agriculture [J]. Journal of Agricultural Library and Information Science, 2005, 17(2): 202-205.
25 周清波, 刘佳, 王利民, 等. EOS-MODIS卫星数据的农业应用现状及前景分析[J]. 农业图书情报学刊, 2005, 17(2):202-205.
26 Zhang Jie, Wu Jianjun, et al. Comparative Analysis of Agricultural Drought Monitoring Methods based on MODIS Data[J]. Remote Sensing Information, 2012, 27(5): 48-54.
26 张洁, 武建军,等. 基于MODIS数据的农业干旱监测方法对比分析[J]. 遥感信息, 2012, 27(5):48-54.
27 Amani M , Salehi B , Mahdavi S , et al. Temperature-Vegetation-soil Moisture Dryness Index(TVMDI)[J].Remote Sen-sing of Environment,2017,197:1-14. doi:10.1016/j.rse.2017. 05.026.
doi: 10.1016/j.rse.2017. 05.026
28 Shen Xiaotong, An Ru. Comparative Evaluation of ESA CCI Active and Passive Microwave Soil Moisture Products[J]. Remote Sensing Information, 2017, 32(2): 89-93.
28 申晓骥, 安如. 欧空局主、被动微波土壤湿度产品的比较验证[J]. 遥感信息, 2017, 32(2):89-93.
29 Shuai T , Zhang X , Wang S , et al. A Spectral Angle Distance-weighting Reconstruction Method for Filled Pixels of the MODIS Land Surface Temperature Product[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9):1514-1518.
30 Song C, Jia L. A Method for Downscaling FengYun-3B Soil Moisture based on Apparent Thermal Inertia[J]. Remote Sensing, 2016, 8(9):703. doi: 10.3390/rs8090703.
doi: 10.3390/rs8090703
31 Carlson T N, Gillies R R, Perry E M. A Method to Make Use of Thermal Infrared Temperature and NDVI Measurements to Infer Surface Soil Water Content and Fractional Vegetation Cover[J]. Remote Sens. Rev. 1994, 9: 161-173. doi: 10.1080/02757259409532220.
doi: 10.1080/02757259409532220
32 Wang F , Wang Z , Yang H , et al. Capability of Remotely Sensed Drought Indices for Representing the Spatio–Temporal Variations of the Meteorological Droughts in the Yellow River Basin[J]. Remote Sensing, 2018, 10(11):1834. doi: 10.3390/rs10111834.
doi: 10.3390/rs10111834
33 López-Moreno J L, Vicente-Serrano S M , Zabalza J , et al. Hydrological Response to Climate Variability at Different Time Scales: A Study in the Ebro Basin[J]. Journal of Hydrology (Amsterdam), 2013, 477:175-198.
34 Sandholt I, Rasmussen K , Andersen J. A Simple Interpretation of the Surface Temperature/vegetation Index Space for Assessment of Surface Moisture Status[J]. Remote Sensing of Environment, 2002, 79(2-3):213-224.
35 Gao Lei, Zhai Zhihao, Lu Liping. An Review of Agricultural Drought Monitoring Model based on Vegetation Index and Surface Temperature Feature Space[J]. Remote Sensing for Land and Resources, 2007, 19(3): 1-7.
35 高磊, 覃志豪, 卢丽萍. 基于植被指数和地表温度特征空间的农业干旱监测模型研究综述[J]. 国土资源遥感, 2007, 19(3):1-7.
36 Gao B C. NDWI--A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space.[C]// Imaging Spectrometry. 1995.
37 Chen D, Huang J, Jackson T J. Vegetation Water Content Estimation for Corn and Soybeans Using Spectral Indices Derived from MODIS Near- and Short-wave Infrared Bands[J]. Remote Sensing of Environment, 2005, 98(2):225-236.
[1] 韩天,潘小多,王旭峰,黄广辉,韦海宁. 遥感资料在WRF-Chem沙尘模拟中的应用[J]. 遥感技术与应用, 2020, 35(4): 808-819.
[2] 王作亮,文军,刘蓉,李振朝,郑东海,王欣. 基于地基微波辐射计数据评估不同土壤介电模型反演土壤湿度的适用性[J]. 遥感技术与应用, 2020, 35(1): 97-110.
[3] 张新平,乔治,李皓,闫杰,张芳芳,赵栋锋,王得祥,康海斌,杨航,冯扬. 基于Landsat影像和不规则梯形方法遥感反演延安城市森林表层土壤水分[J]. 遥感技术与应用, 2020, 35(1): 120-131.
[4] 李梦云,黄方. 基于SPOT-VGT可见光/短波红外波段数据对AMSR-E土壤湿度的降尺度研究[J]. 遥感技术与应用, 2016, 31(2): 342-348.
[5] 姜亚珍,张瑜洁,孙琛,游松财. 基于TVDI河北省干热风同期土壤湿度监测研究[J]. 遥感技术与应用, 2014, 29(3): 442-450.
[6] 李昂,陆其峰,杨晓峰,张建伟. AMSR-E卫星反演土壤湿度与ECWMF,NECP再分析土壤湿度比较分析[J]. 遥感技术与应用, 2013, 28(4): 666-673.
[7] 王慧慧,周廷刚,杜嘉,苗正红. 温度植被旱情指数在吉林省干旱监测中的应用[J]. 遥感技术与应用, 2013, 28(2): 324-329.
[8] 何媛,文军,张堂堂,田辉,刘蓉,吕少宁,赖欣. 卫星微波遥感结合可见光遥感估算黄河源区土壤湿度研究[J]. 遥感技术与应用, 2013, 28(2): 300-308.
[9] 蔡达鹏,徐涵秋. 利用植被覆盖度—地表温度特征空间提取厦门市土壤湿度信息[J]. 遥感技术与应用, 2008, 23(3): 278-283.
[10] 魏国栓,沈润平,丁国香. 仪征地区农田深层土壤湿度遥感反演初探[J]. 遥感技术与应用, 2008, 23(1): 36-41.
[11] 高 峰, 车涛, 王介民, 文军 . 被动微波遥感指数及其应用[J]. 遥感技术与应用, 2005, 20(6): 551-557.
[12] 姚春生,张增祥,汪潇. 使用温度植被干旱指数法(TVDI)反演新疆土壤湿度[J]. 遥感技术与应用, 2004, 19(6): 473-479.
[13] 戈建军,王 超,张卫国. 土壤湿度微波遥感中的植被散射模型进展[J]. 遥感技术与应用, 2002, 17(4): 209-214.