Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (3): 489-501    DOI: 10.11873/j.issn.1004-0323.2021.3.0489
森林遥感专栏     
基于无人机遥感技术的森林参数获取研究进展
刘鹤(),顾玲嘉(),任瑞治
吉林大学 电子科学与工程学院,吉林 长春 130012
Research Progress of Forest Parameter Acquisition based on UAV Remote Sensing Technology
He Liu(),Lingjia Gu(),Ruizhi Ren
College of Electronic Science and Engineering,Jilin University,Changchun 130012,China
 全文: PDF(1440 KB)   HTML
摘要:

凭借着高分辨率、可控性强和性价比高的特点,无人机遥感技术在森林研究中得到了迅速的发展与应用。对无人机遥感成像平台的发展和国内外利用无人机遥感技术开展森林调查的情况进行介绍,针对单木和林分两种森林资源调查对象,总结了目前利用无人机遥感技术提取森林参数的前沿方法。重点分析和讨论了基于无人机平台的多光谱、高光谱和激光雷达传感器获取森林参数的算法,对比了其优越性、局限性并分析其最佳应用场景。此外,介绍了无人机遥感在森林树种分类和病虫害监测方面的应用情况。最后,对无人机遥感技术在森林监测方面的应用前景进行了展望,可为今后基于无人机遥感的森林资源监管领域的研究提供理论依据与技术支持。

关键词: 森林参数无人机多光谱遥感高光谱遥感激光雷达遥感    
Abstract:

With the characteristics of high resolution, strong controllability and high cost performance, Unmanned Aerial Vehicle(UAV) remote sensing technology has been rapidly developed and applied in forest research. This study introduces the development of UAV remote sensing imaging platform, and the situation of forest investigation using UAV remote sensing technology at home and abroad. According to the investigation objects of individual tree and forest, the advanced methods of extracting forest parameters by UAV remote sensing technology are summarized. This study focuses on the analysis and discussion of various algorithms for obtaining forest parameters based on multispectral, hyperspectral and lidar sensors loaded in UAV platform, compares their advantages and limitations, and analyzes their best application scenarios. In addition, the application of UAV remote sensing in forest tree species classification and pest monitoring is also introduced. Finally, the application prospect of UAV in forest monitoring is discussed, which can provide theoretical basis and technical support for forest resources supervision in the future.

Key words: Forest parameters    Unmanned Aerial Vehicle(UAV)    Multispectral remote sensing    Hyperspectral remote sensing    LiDAR remote sensing
收稿日期: 2020-04-20 出版日期: 2021-07-22
ZTFLH:  P237  
基金资助: 国家自然科学基金面上项目(41871225)
通讯作者: 顾玲嘉     E-mail: heliu18@jlu.edu.cn;gulingjia@jlu.edu.cn
作者简介: 刘鹤(1996-),女,吉林吉林人,硕士研究生,主要从事森林遥感监测研究。E?mail:heliu18@jlu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘鹤
顾玲嘉
任瑞治

引用本文:

刘鹤,顾玲嘉,任瑞治. 基于无人机遥感技术的森林参数获取研究进展[J]. 遥感技术与应用, 2021, 36(3): 489-501.

He Liu,Lingjia Gu,Ruizhi Ren. Research Progress of Forest Parameter Acquisition based on UAV Remote Sensing Technology. Remote Sensing Technology and Application, 2021, 36(3): 489-501.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.3.0489        http://www.rsta.ac.cn/CN/Y2021/V36/I3/489

图1  Scopus和Elsevier Science Direct平台关于forest和forest UAV的年度论文发表统计图
多光谱传感器型号光谱范围/nm分辨率/像素重量/g
Sentera QuadRGB Red:655 Red edge:725 NIR:8001 248×950170
ADC MicroGreen:520~600 Red:630~690 NIR:760~9002 048×1 536200
MiniMCA6

Blue:490 Green:550 Red:680

Red edge:720 NIR1:800 NIR2:900

1 280×1 024700
Buzzard

Blue:500 Green:550 Red:675 NIR1:700

NIR2:750(10) NIR3:780(10)

1 280×1 024500
高光谱相机型号波谱范围/nm光谱分辨率/nm重量/kg
Field Spec 4350~2 50035.4
Caia Sky-mini400~1 00044
Cubert S185450~95044.9
激光雷达型号最大测距/m扫描频率/(线/s)重量/g
蜂鸟25016/32738
Veludyne10016830
表1  常见无人机搭载的传感器参数汇总表
图2  无人机遥感技术在森林资源监测中的技术流程图
研究

Frasor

[79]

Brovkina

[80]

Cao

[81]

Franklin

[82]

Fromm

[83]

Samkey

[84]

Sothe 等[85]Gini 等[86]
传感器类型RGB
LiDAR
CIR
MSP
HSP
精度/分类方法监督KNN79%76.12%
DT84%
RF78%74.95%
SVM85.71%84.4%
CNN81%
非监督最大似然法79%
表2  对单木分类研究中采用的无人机传感器类型和分类精度汇总表
1 Ma Genyin, Lei Chengxiang, He Fachuan, et al. A Crop Classification Algorithm based on Satellite Remote Sensing Images[J]. Journal of Jilin University (Information Science Edition),2020,38(5):624-631.
1 马艮寅,雷程翔,贺法川,等.基于卫星遥感图像的农作物分类算法[J]. 吉林大学学报(信息科学版), 2020, 38(5): 624-631.
2 Origo N, Calders K, Nightingale J, et al. Influence of Levelling Technique on the Retrieval of Canopy Structural Parameters from Digital Hemispherical Photography[J]. Agricultural and Forest Meteorology, 2017, 237: 143-149.
3 Buchholz T, Keeton W S, Gunn J S. Economics of Integrated Harvests with Biomass for Energy in Non-industrial Forests in the Northeastern US Forest[J]. Forest Policy and Economics, 2019, 109: 102023. doi: 10.1016/j.forpol.2019.102023.
doi: 10.1016/j.forpol.2019.102023
4 Luo S, Wang C, Xi X, et al. Estimating Forest Aboveground Biomass Using Small-footprint Full-waveform Airborne LiDAR Data[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 83: 101922. doi: 10.1016/j.jag.2019.101922.
doi: 10.1016/j.jag.2019.101922
5 Hao Shuang, Chen Yongfu, Liu Hua, et al. Object-oriented Forest Classification of Linzhi County based on CART Decision Tree with Texture Information[J]. Remote Sensing Technology and Application, 2017, 32(2): 386-394.
5 郝泷,陈永富,刘华,等. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用, 2017, 32(2): 386-394.
6 Sankey T, Donager J, Mcvay J, et al. UAV LiDAR and Hyperspectral Fusion for Forest Monitoring in the Southwestern USA[J]. Remote Sensing of Environment, 2017, 195: 30-43. doi: 10.1016/j.rse.2017.04.007.
doi: 10.1016/j.rse.2017.04.007
7 Dalponte M, Jucker T, Liu S, et al. Characterizing Forest Carbon Dynamics Using Multi-temporal LiDAR Data[J]. Remote Sensing of Environment, 2019, 224: 412-420. doi: 10.1016/j.rse.2019.02.018.
doi: 10.1016/j.rse.2019.02.018
8 Zhang N, Zhang X, Yang G, et al. Assessment of Defoliation during the Dendrolimus Tabulaeformis Tsai et Liu Disaster Outbreak Using UAV-based Hyperspectral Images[J]. Remote Sensing of Environment,2018,217:323-339. doi: 10.1016/j.rse.2018.08.024.
doi: 10.1016/j.rse.2018.08.024
9 Sloan S, Sayer J A. Forest Resources Assessment of 2015 Shows Positive Global Trends but Forest Loss and Degradation Persist in Poor Tropical Countries[J]. Forest Ecology and Management,2015,352:134-145. doi:10.1016/j.foreco. 2015.06.013.
doi: 10.1016/j.foreco. 2015.06.013
10 Matasci G, Hermosilla T, Wulder M A, et al. Large-area Mapping of Canadian Boreal Forest Cover, Height, Biomass and Other Structural Attributes Using Landsat Composites and LiDAR Plots[J]. Remote Sensing of Environment, 2018, 209: 90-106. doi: 10.1016/j.rse.2017.12.020.
doi: 10.1016/j.rse.2017.12.020
11 Xie Yuyang, Wang Bin, Yao Yang, et al. Quantification of Vertical Community Structure of Subtropical Evergreen Broad-leaved Forest Community Using UAV-LiDAR Data[J]. Acta Ecologica Sinica, 2020, 40(3): 940-951.
11 解宇阳,王彬,姚扬,等. 基于无人机激光雷达遥感的亚热带常绿阔叶林群落垂直结构分析[J].生态学报,2020,40(3):940-951.
12 Dandois J P, Ellis E C. High Spatial Resolution Three-dimensional Mapping of Vegetation Spectral Dynamics Using Computer Vision[J]. Remote Sensing of Environment, 2013, 136: 259-276. doi: 10.1016/j.rse.2013.04.005.
doi: 10.1016/j.rse.2013.04.005
13 Järnstedt J, Pekkarinen A, Tuominen S, et al. Forest Variable Estimation Using a High-resolution Digital Surface Model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 74: 78-84. doi: 10.1016/j.isprsjprs.2012.08.006.
doi: 10.1016/j.isprsjprs.2012.08.006
14 Gu C, Clevers J G P W, Liu X, et al. Predicting Forest Height Using the GOST, Landsat 7 ETM+, and Airborne LiDAR for Sloping Terrains in the Greater Khingan Mountains of China[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2018,137:97-111. doi:10.1016/j.isprsjprs. 2018.01.005.
doi: 10.1016/j.isprsjprs. 2018.01.005
15 Chu Hongliang, Xiao Qing, Bai Junhua, et al. The Retrieval of Leaf Area Index based on Remote Sensing by Unmanned Aerial Vehicle[J]. Remote Sensing Technology and Application, 2017, 32(1): 140-148.
15 褚洪亮,肖青,柏军华,等. 基于无人机遥感的叶面积指数反演[J]. 遥感技术与应用,2017, 32(1): 140-148.
16 Tian Huihui, Feng Li, Zhao Menmen, et al. Analysis of Meticulous Features of Urban Surface Temperature based on UAV Thermal Thermography[J]. Remote Sensing Technology and Application, 2019,34(3):553-563.
16 田慧慧, 冯莉, 赵璊璊, 等. 无人机热红外城市地表温度精细特征研究[J]. 遥感技术与应用, 2019, 34(3): 553-563.
17 He Yi, Zhou Xiaocheng, Huang Hongyu, et al. Counting Tree Number in Subtropical Forest Districts based on UAV Remote Sensing Images[J]. Remote Sensing Technology and Application, 2018,33(1):168-176.
17 何艺, 周小成, 黄洪宇, 等. 基于无人机遥感的亚热带森林林分株数提取[J]. 遥感技术与应用, 2018,33(1): 168-176.
18 Chai Ziwei, Kang Jun, Wang Li, et al. The Construction of DEM in Mountain Plantation Landscape based on UAV Images[J]. Remote Sensing Technology and Application, 2015,30(3):504-509.
18 柴子为, 康峻, 王力, 等. 基于无人机影像的山地人工林景观 DEM 构建[J]. 遥感技术与应用, 2015, 30(3): 504-509.
19 Sankey T, Donager J, McVay J, et al. UAV LiDAR and Hyperspectral Fusion for Forest Monitoring in the Southwestern USA[J]. Remote Sensing of Environment,2017,195:30-43. doi: 10.1016/j.rse.2017.04.007.
doi: 10.1016/j.rse.2017.04.007
20 Qin Haiming, Wang Cheng, Xi Xiaohuan, et al. Development of Airborne Laser Bathymetric Technology and Applications[J]. Remote Sensing Technology and Application, 2016,31(4): 617-624.
20 秦海明,王成,习晓环,等. 机载激光剋大探测技术与应用研究进展[J]. 遥感技术与应用,2016,31(4): 617-624.
21 Ma L, Zheng G, Eitel J U H, et al. Retrieving Forest Canopy Extinction Coefficient from Terrestrial and Airborne LiDAR[J]. Agricultural and Forest Meteorology, 2017, 236: 1-21. doi: 10.1016/j.agrformet.2017.01.004.
doi: 10.1016/j.agrformet.2017.01.004
22 Gao Sha, Shen Xin, Dai Jinsong, et al. Tree Species Classification in Urban Forest based on LiDAR Point Cloud Segmentation and Hyperspectral Metrics Extraction[J]. Remote Sensing Technology and Application, 2018,33(6): 1073-1083.
22 皋厦,申鑫,代劲松,等. 结合LiDAR单木分割和高光谱特征提取的城市森林树种分类[J].遥感技术与应用,2018,33(6): 1073-1083.
23 Trochta J, Krůček M, Vrška T, et al. 3D Forest: An Application for Descriptions of Three-dimensional Forest Structures Using Terrestrial LiDAR[J]. PLoS One, 2017, 12(5). doi: 10.1371/journal.pone.0176871.
doi: 10.1371/journal.pone.0176871
24 Ballanti L, Blesius L, Hines E, et al. Tree Species Classification using Hyperspectral Imagery: A Comparison of Two Classifiers[J]. Remote Sensing,2016,8(6):445. doi:10.3390/ rs8060445.
doi: 10.3390/ rs8060445
25 Adão T, Hruška J, Pádua L, et al. Hyperspectral Imaging: A Review on UAV-based Sensors, Data Processing and Applications for Agriculture and Forestry[J]. Remote Sensing, 2017, 9(11): 1110. doi: 10.3390/rs9111110.
doi: 10.3390/rs9111110
26 Sankey T, Donager J, McVay J, et al. UAV LiDAR and Hyperspectral Fusion for Forest Monitoring in the Southwestern USA[J]. Remote Sensing of Environment,2017,195:30-43. doi: 10.1002/rse2.137.
doi: 10.1002/rse2.137
27 Thomson E R, Malhi Y, Bartholomeus H, et al. Mapping the Leaf Economic Spectrum Across West African Tropical Forests Using UAV-Acquired Hyperspectral Imagery[J]. Remote Sensing,2018,10(10):1532. doi:10.3390/rs10101532.
doi: 10.3390/rs10101532
28 Nevalainen O, Honkavaara E, Tuominen S, et al. Individual Tree Detection and Classification with UAV-based Photogrammetric Point Clouds and Hyperspectral Imaging[J]. Remote Sensing, 2017, 9(3): 185. doi: 10.3390/rs9030185.
doi: 10.3390/rs9030185
29 Balsi M, Esposito S, Fallavollita P, et al. Single-tree Detection in High-density LiDAR Data from UAV-based Survey[J]. European Journal of Remote Sensing, 2018, 51(1): 679-692. doi: 10.1080/22797254.2018.1474722.
doi: 10.1080/22797254.2018.1474722
30 Picos J, Bastos G, Míguez D, et al. Individual Tree Detection in a Eucalyptus Plantation Using Unmanned Aerial Vehicle (UAV)-LiDAR[J]. Remote Sensing, 2020, 12(5): 885. doi: 10.3390/rs12050885.
doi: 10.3390/rs12050885
31 Thiel C, Schmullius C. Comparison of UAV Photograph-based and Airborne LiDAR-based Point Clouds over Forest from a Forestry Application Perspective[J]. International Journal of Remote Sensing, 2017, 38(8-10): 2411-2426.
32 Dai W, Yang B, Dong Z, et al. A New Method for 3D Individual Tree Extraction using Multispectral Airborne LiDAR Point Clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2018,144:400-411. doi:10.1016/j.isprsjprs. 2018.08.010.
doi: 10.1016/j.isprsjprs. 2018.08.010
33 Sačkov I, Hlásny T, Bucha T, et al. Integration of Tree Allometry Rules to Treetops Detection and Tree Crowns Delineation Using Airborne LiDAR Data[J]. iForest-Biogeosciences and Forestry,2017,10(2):459. doi: 10.3832/ifor2093-010.
doi: 10.3832/ifor2093-010
34 Hamraz H, Contreras M A, Zhang J. A Robust Approach for Tree Segmentation in Deciduous Forests Using Small-footprint Airborne LiDAR Data[J]. International Journal of Applied Earth Observation and Geoinformation,2016,52:532-541. doi: 10.1016/j.jag.2016.07.006.
doi: 10.1016/j.jag.2016.07.006
35 Herfort B, Höfle B, Klonner C. 3D Micro-mapping: Towards Assessing the Quality of Crowdsourcing to Support 3D Point Cloud Analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2018,137:73-83. doi:10.1016/j.isprsjprs.2018.01.009.
doi: 10.1016/j.isprsjprs.2018.01.009
36 Sadeghi Y, St-Onge B, Leblon B, et al. Canopy Height Model (CHM) Derived from a TanDEM-X InSAR DSM and an Airborne LiDAR DTM in Boreal Forest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(1): 381-397.
37 Mao X, Hou J. Object-based Forest Gaps Classification Using Airborne LiDAR Data[J]. Journal of Forestry Research, 2019, 30(2): 617-627.
38 Fedrigo M, Newnham G J, Coops N C, et al. Predicting Temperate Forest Stand Types Using only Structural Profiles from Discrete Return Airborne LiDAR[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 136: 106-119. doi: 10.1016/j.isprsjprs.2017.11.018.
doi: 10.1016/j.isprsjprs.2017.11.018
39 Andersen H E, McGaughey R J, Reutebuch S E. Estimating Forest Canopy Fuel Parameters Using LiDAR Data[J]. Remote Sensing of Environment, 2005, 94(4): 441-449.
40 Davis J, Ramamoorthi R, Rusinkiewicz S. Spacetime Stereo: A Unifying Framework for Depth from Triangulation[C]∥2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings. IEEE, 2003, 2: II-359. doi: 10.1109/CVPR.2003.1211491.
doi: 10.1109/CVPR.2003.1211491
41 Banerjee S, Finley A. Bayesian Multi-resolution Modeling for Spatially Replicated Data Sets with Application to Forest Biomass Data[J]. Journal of Statistical Planning and Inference, 2007, 137(10): 3193-3205.
42 Dong Xinyu, Li Jiaguo, Chen Hanyue, et al. Extraction of Individual Tree Information based on Remote Sensing Images from an Unmanned Aerial Vehicle[J]. Journal of Remote Sensing, 2018, 23(6): 1269-1280.
42 董新宇, 李家国, 陈瀚阅,等. 无人机遥感影像林地单株立木信息提取[J]. 遥感学报, 2018, 23(6):1269-1280.
43 Silva C A, Klauberg C, Hudak A T, et al. Predicting Stem Total and Assortment Volumes in an Industrial Pinus Taeda L. Forest Plantation Using Airborne Laser Scanning Data and Random Forest[J]. Forests,2017,8(7):254. doi: 10.3390/f8070254.
doi: 10.3390/f8070254
44 Zhu Shi, Gu Yaolin. Volume Rendering Algorithm of Irregular Volume based on Cell Projection[J]. Computer Engineering and Applications, 2008, 44(15) : 68- 70.
44 朱奭, 顾耀林. 基于体元投影的一种非规则数据场体绘制方法[J]. 计算机工程与应用,2008,44(15):72-74.
45 Li Zengyuan, Liu Qingwang and Pang Yong. Review on Forest Parameters Inversion Using LiDAR[J]. Journal of Remote Sensing, 2016,20(5):1138-1150.
45 李增元, 刘清旺, 庞勇. 激光雷达森林参数反演研究进展[J]. 遥感学报, 2016,20(5):1138-1150.
46 Lixin D. New Development of Forest Canopy Height Remote Sensing[J]. Remote Sensing Technology and Application, 2016, 31(5): 833-845.
47 Smreček R, Sačkov I, Michňová Z, et al. Automated Tree Detection and Crown Delineation Using Airborne Laser Scanner Data in Heterogeneous East-Central Europe Forest with Different Species Mix[J]. Journal of Forestry Research, 2017, 28(5): 1049-1059.
48 Li Wang, Niu Zheng N, Wang Cheng, et al. Forest Above-ground Biomass Estimation at Plot and Tree Levels Using Airborne LiDAR Data[J]. Journal of Remote Sensing, 2015,19(4):669-679.
48 李旺,牛铮,王成,等. 机载LiDAR数据估算样地和单木尺度森林地上生物量[J]. 遥感学报, 2015,19(4):135-145.
49 Zhang D, Liu J, Ni W, et al. Estimation of Forest Leaf Area Index Using Height and Canopy Cover Information Extracted from Unmanned Aerial Vehicle Stereo Imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(2): 471-481.
50 Laurel B, Leonhard B, Ellen H, et al. Tree Species Classification Using Hyperspectral Imagery: A Comparison of Two Classifiers[J].Remote Sensing,2016,8(6):445. doi:10.3390/ rs8060445.
doi: 10.3390/ rs8060445
51 Yuan C, Liu Z, Zhang Y. UAV-based Forest Fire Detection and Tracking Using Image Processing Techniques[C]∥ 2015 International Conference on Unmanned Aircraft Systems, ICUAS2015.
51 IEEE, 2015.
52 Yuan C, Liu Z, Zhang Y. Fire Detection using Infrared Images for UAV-based Forest Fire Surveillance[C]∥ International Conference on Unmanned Aircraft Systems. IEEE, 2017.
53 Thiel C, Schmullius C. Derivation of Forest Parameters from Stereographic UAV Data- A Comparison with Airborne LiDAR Data[C]∥ Living Planet Symposium. Living Planet Symposium, 2016.
54 Tian J, Wang L, Li X, et al. Comparison of UAV and WorldView-2 Imagery for Mapping Leaf Area Index of Mangrove Forest[J]. International Journal of Applied Earth Observation & Geoinformation, 2017, 61:22-31.
55 Koch Frank H , Ambrose Mark J , Denys Y, et al. Modeling Urban Distributions of Host Trees for Invasive Forest Insects in the Eastern and Central USA: A Three-step Approach Using Field Inventory Data[J]. Forest Ecology & Management, 2018, 417. doi: 10.1016/j.foreco.2018.03.004.
doi: 10.1016/j.foreco.2018.03.004
56 Liu Qian, Yang Le, Liu Qinhuo, et al.Review of Forest above Inversion Methods based on Remote Sensing Technology[J]. Journal of Remote Sensing,2015,19(1):62-74.
56 刘茜,杨乐,柳钦火,等. 森林地上生物量遥感反演方法综述[J]. 遥感学报,2015,19(1): 62-74.
57 Näsi, Roope, Viljanen N, Kaivosoja J, et al. Estimating Biomass and Nitrogen Amount of Barley and Grass Using UAV and Aircraft based Spectral and Photogrammetric 3D Features[J]. Remote Sensing,2018,10(7). doi:10.3390/rs10071082.
doi: 10.3390/rs10071082
58 Bu Fan, Shi Yuli. The Comparison of Urban Tree Crown Extraction based on Airborne LiDAR Elevation Difference and High Resolution Imagery[J]. Remote Sensing Technology and Application, 2017, 32(5): 857-882.
58 卜帆,石玉立. 机载LiDAR高差和高分影像的城市树冠提取比较[J]. 遥感技术与应用,2017, 32(5): 857-882.
59 Liu Hao, Zhang Zhengnan and Cao Lin. Estimating Forest Stand Characteristics in a Coastal Plain Forest Plantation based on Vertical Structure Profile Parameters derived from ALS Data[J]. Journal of Remote Sensing,2018,22(5):872-
59 888[刘浩,张峥男,曹林. 机载激光雷达森林垂直结构剖面参数的沿海平原人工林林分特征反演[J]. 遥感学报,2018,22(5):872-888.
60 Kane V R, Bakker J D, Mcgaughey R J, et al. Examining Conifer Canopy Structural Complexity Across Forest Ages and Elevations with LiDAR Data[J]. Canadian Journal of Forest Research, 2010, 40(40):774-787.
61 Jayathunga S, Owari T, Tsuyuki S. Analysis of Forest Structural Complexity Using Airborne LiDAR Data and Aerial Photography in a Mixed Conifer–broadleaf Forest in Northern Japan[J]. Journal of Forestry Research,2018,29(2):223-237.
62 Hermosilla T, Ruiz L A, Kazakova A N, et al. Estimation of Forest Structure and Canopy Fuel Parameters from Small-footprint Full-waveform LiDAR Data[J]. International Journal of Wildland Fire, 2014, 23. doi: 10.1071/WF13086.
doi: 10.1071/WF13086
63 Zhao K, Popescu S, Meng X, et al. Characterizing Forest Canopy Structure with LiDAR Composite Metrics and Machine Learning[J]. Remote Sensing of Environment, 2011, 115(8):1978-1996.
64 Li Yueshuai,Zheng Hongwei,Luo Geping,et al. Extraction and Counting of Populus Euphratica Crown Using UAV Images Integrated with U-Net Method[J]. Remote Sensing Technology and Application,2019,34(5):939-949.
64 李越帅,郑宏伟,罗格平,等. 集成U-Net 方法的无人机影像胡杨树冠提取和计数[J]. 遥感技术与应用,2019,34(5):939-949.
65 Yunfei B. Estimation of Clumping Index and LAI from Terrestrial LiDAR Data[C]∥ IGARSS 2016 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2016.
66 Luo S Z, Jing M C, Cheng W,et al. Comparative Performances of Airborne LiDAR Height and Intensity Data for Leaf Area Index Estimation[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017(99):1-11. doi: 10.1109/JSTARS.2017.2765890.
doi: 10.1109/JSTARS.2017.2765890
67 Lin Yuefeng, Liu Qiuhuo, Li Jing, et al. Estimation of Corn LAI by Synergy Multi-spectral and SAR Remote Sensing Data based on Least Squares Method[J]. Remote Sensing Technology and Application, 2016,31(4): 691-701.
67 林岳峰,柳钦火,李静,等. 最小二乘法联合光学与雷达遥感数据估算玉米叶面积指数[J]. 遥感技术与应用,2016,31(4): 691-701.
68 Varvia P, Rautiainen M, Seppänen A. Bayesian Estimation of Seasonal Course of Canopy Leaf Area Index from Hyperspectral Satellite Data[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2018,208:19-28. doi:10.1016/j.jqsrt. 2018.01.008.
doi: 10.1016/j.jqsrt. 2018.01.008
69 Hakkenberg C R, Zhu K, Peet R K, et al. Mapping Multi‐scale Vascular Plant Richness in a Forest Landscape with Integrated LiDAR and Hyperspectral Remote Sensing[J]. Ecology,2018,99(2):474-487.
70 Lan Z L, Zhao Y, Zhang J G, et al. Profile Distribution of Soil Organic and Inorganic Carbon Under Different Land Use Types in the Loess Plateau of Northern Shaanxi[J]. Huanjing Kexue, 2018, 39(1):339. doi:10.1007/s12665-014-3475-3.
doi: 10.1007/s12665-014-3475-3
71 Qu Y, Zhuang Q. Modeling Leaf Area Index in North America Using a Process‐based Terrestrial Ecosystem Model[J]. Ecosphere, 2018, 9. doi: 10.1002/ecs2.2046.
doi: 10.1002/ecs2.2046
72 Pang Y, Tan B, Solberg S, et al. Forest LAI Estimation Comparison Using LiDAR and Hyperspectral Data in Boreal and Temperate Forests[C]∥Remote Sensing and Modeling of Ecosystems for Sustainability VI. International Society for Optics and Photonics, 2009, 7454: 74540Q.
73 Alonzo M, Bookhagen B, Roberts D A. Urban Tree Species Mapping Using Hyperspectral and LiDAR Data Fusion[J]. Remote Sensing of Environment, 2014, 148:70-83.
74 Zhang D, Liu J, Ni W, et al. Estimation of Forest Leaf Area Index Using Height and Canopy Cover Information Extracted from Unmanned Aerial Vehicle Stereo Imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2019:1-11.doi:10.1109/JSTARS.2019. 2891519.
doi: 10.1109/JSTARS.2019. 2891519
75 Cao L,Coops N C,Sun Y,et al. Estimating Canopy Structure and Biomass in Bamboo Forests Using Airborne LiDAR Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2019,148:114-129. doi:10.1016/j.isprsjprs.2018. 12.006.
doi: 10.1016/j.isprsjprs.2018. 12.006
76 González-Jaramillo V, Fries A, Bendix J. AGB Estimation in a Tropical Mountain Forest (TMF) by Means of RGB and Multispectral Images Using an Unmanned Aerial Vehicle (UAV)[J].Remote Sensing,2019,11(12):1413. doi: 10.3390/ rs11121413.
doi: 10.3390/ rs11121413
77 Padró J C, Muñoz F J, Planas J, et al. Comparison of Four UAV Georeferencing Methods for Environmental Monitoring Purposes Focusing on the Combined Use with Airborne and Satellite Remote Sensing Platforms[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 75: 130-140.
78 Li Zhe,Zhang Qinyu,Peng Daoli. Classification Method of Tree Species based on GF-2 Remote Sensing Images[J].Remote Sensing Technology and Application,2019,34(5):970-982.
78 李哲,张沁雨,彭道黎. 基于高分二号遥感影像的树种分类方法[J]. 遥感技术与应用,2019,34(5):970-982.
79 Fraser B T, Congalton R G. Evaluating the Effectiveness of Unmanned Aerial Systems (UAS) for Collecting Thematic Map Accuracy Assessment Reference Data in New England Forests[J].Forests,2019,10(1):24. doi:10.3390/f10010024.
doi: 10.3390/f10010024
80 Brovkina O, Cienciala E, Surový P, et al. Unmanned Aerial Vehicles (UAV) for Assessment of Qualitative Classification of Norway Spruce in Temperate Forest Stands[J]. Geo-spatial Information Science, 2018, 21(1): 12-20.
81 Cao J, Leng W, Liu K, et al. Object-based Mangrove Species Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface Models[J]. Remote Sensing, 2018, 10(1): 89. doi: 10.3390/rs10010089.
doi: 10.3390/rs10010089
82 Franklin S E, Ahmed O S. Deciduous Tree Species Classification Using Object-based Analysis and Machine Learning with Unmanned Aerial Vehicle Multispectral Data[J]. International Journal of Remote Sensing, 2018, 39(15-16): 5236-5245.
83 Fromm M,Schubert M,Castilla G,et al.Automated Detection of Conifer Seedlings in Drone Imagery Using Convolutional Neural Networks[J]. Remote Sensing,2019,11(21):2585.doi:10.3390/rs11212585.
doi: 10.3390/rs11212585
84 Sankey T T, McVay J, Swetnam T L, et al. UAV Hyperspectral and LiDAR Data and Their Fusion for Arid and Semi‐arid Land Vegetation Monitoring[J]. Remote Sensing in Ecology and Conservation, 2018, 4(1): 20-33.
85 Sothe C,De Almeida C M,Schimalski M B,et al.Comparative Performance of Convolutional Neural Network, Weighted and Conventional Support Vector Machine and Random Forest for Classifying Tree Species Using Hyperspectral and Photogrammetric Data[J]. GIS Science & Remote Sensing, 2020: 1-26.
86 Gini R, Passoni D, Pinto L, et al. Use of Unmanned Aerial Systems for Multispectral Survey and Tree Classification: A Test in a Park Area of Northern Italy[J]. European Journal of Remote Sensing, 2014, 47(1): 251-269.
87 Su Di, Gao Xindan. Estimation of Forest Canopy Density and Stock Volume based on UAV Aerial Survey Data [J]. Journal of Forestry Engineering,2020,5(1):156-163.
87 苏迪,高心丹.基于无人机航测数据的森林郁闭度和蓄积量估测[J].林业工程学报,2020,5(1):156-163.
88 Lehmann J, Nieberding F, Prinz T, et al. Analysis of Unmanned Aerial System-based CIR Images in Forestry-A New Perspective to Monitor Pest Infestation Levels[J]. Forests, 2015,6:594-612. doi: 10.3390/f6030594.
doi: 10.3390/f6030594
89 Smigaj M, Gaulton R, Barr S L, et al. UAV-borne Thermal Imaging for Forest Health Monitoring: Detection of Disease-induced Canopy Temperature Increase [J]. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, XL-3/W3:349-354. doi: 10.5194/isprsarchives-XL-3-W3-349-2015.
doi: 10.5194/isprsarchives-XL-3-W3-349-2015
90 Li Xiang, Liu Kai, Zhu Yuanhui, et al. Study on Mangrove Species Classification based on ZY-3 Image[J]. Remote Sensing Technology and Application, 2018, 33(2): 360-369.
90 李想,刘凯,朱远辉,等. 基于资源三号影像的红树林物种分类研究[J]. 遥感技术于应用, 2018, 33(2): 360-369.
[1] 帅艳民,杨健,吴昊,邵聪颖,徐辛超,刘明岳,刘涛,梁继. 基于无人机观测的水稻冠层样方多角度反射特点分析[J]. 遥感技术与应用, 2021, 36(2): 342-352.
[2] 邵文静,孙伟伟,杨刚. 高光谱遥感影像纹理特征提取的对比分析[J]. 遥感技术与应用, 2021, 36(2): 431-440.
[3] 赵亮,刘宇,罗勇. 数字表面模型(DSM)参数指示林窗特征的有效性研究[J]. 遥感技术与应用, 2021, 36(2): 420-430.
[4] 夏炎,黄亮,王枭轩,陈朋弟. 基于无人机影像的烟草精细提取[J]. 遥感技术与应用, 2020, 35(5): 1158-1166.
[5] 郝睿,李兆富,张舒昱,潘剑君,姜小三,张文敏,宋金超. 整合无人机和面向对象的农村居住环境信息提取[J]. 遥感技术与应用, 2020, 35(3): 576-586.
[6] 虞瑶,苏红军,姚文静. 基于Boosting的高光谱遥感切空间协同表示集成学习方法[J]. 遥感技术与应用, 2020, 35(3): 634-644.
[7] 王飞龙,王福民,胡景辉,谢莉莉,谢京凯. 基于相对光谱变量的无人机遥感水稻估产及产量制图[J]. 遥感技术与应用, 2020, 35(2): 458-468.
[8] 韦蕾蕾,方陆明,陈磊,郑辛煜. 基于无人机单视场全景图的地块面积测量研究[J]. 遥感技术与应用, 2020, 35(2): 484-496.
[9] 何原荣,陈平,苏铮,王植,李权海. 基于三维激光扫描与无人机倾斜摄影技术的古建筑重建[J]. 遥感技术与应用, 2019, 34(6): 1343-1352.
[10] 万剑华,王朝,刘善伟,冯建伟,段政明. 消费级多旋翼无人机1∶500大比例尺测图的应用[J]. 遥感技术与应用, 2019, 34(5): 1048-1053.
[11] 李越帅,郑宏伟,罗格平,杨辽,王伟胜,桂东伟. 集成U-Net方法的无人机影像胡杨树冠提取和计数[J]. 遥感技术与应用, 2019, 34(5): 939-949.
[12] 林志玮,丁启禄,黄嘉航,涂伟豪,胡典,刘金福. 基于DenseNet的无人机光学图像树种分类研究[J]. 遥感技术与应用, 2019, 34(4): 704-711.
[13] 程雪,贺炳彦,黄耀欢,孙志刚,李鼎,朱婉雪. 基于无人机高光谱数据的玉米叶面积指数估算[J]. 遥感技术与应用, 2019, 34(4): 775-784.
[14] 王思恒, 黄长平, 张立福, 高显连, 付安民. 陆地生态系统碳监测卫星远红波段叶绿素荧光反演算法设计[J]. 遥感技术与应用, 2019, 34(3): 476-487.
[15] 田慧慧, 冯 莉, 赵璊璊, 郭 松, 董继伟. 无人机热红外城市地表温度精细特征研究 [J]. 遥感技术与应用, 2019, 34(3): 553-563.