Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (4): 827-837    DOI: 10.11873/j.issn.1004-0323.2021.4.0827
遥感应用     
基于MODIS影像的中巴经济走廊荒漠化程度时空动态监测研究
敏玉芳1,2,3(),张耀南1,3(),康建芳1,3,冯克庭1,2,3
1.中国科学院西北生态环境资源研究院,甘肃 兰州 730030
2.中国科学院大学,北京 100049
3.国家冰川冻土沙漠科学数据中心,甘肃 兰州 730030
Study on Spatial-temporal Dynamic Monitoring of Degree of Desertification in CPEC based on MODIS Image
Yufang Min1,2,3(),Yaonan Zhang1,3(),Jianfang Kang1,3,Keting Feng1,2,3
1.Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
3.National Cryosphere Desert Data Center,Lanzhou 730000,China
 全文: PDF(5010 KB)   HTML
摘要:

荒漠化是全球最为严重的生态环境问题之一,中巴经济走廊荒漠化问题尤为严重,干旱和大面积的荒漠是其主要的生态环境约束因素。以MODIS数据为基础,提取关键的地表特征参量,定量化研究荒漠化程度与地表特征参量间的关系与规律;构建了基于地表反照率-植被特征空间、决策树的遥感监测模型,并以2015年数据为例,分析了中巴经济走廊荒漠化程度,结果表明:Albedo-MSAVI、Albedo-NDVI和决策树C5.0共3种方法的总体精度分别为88.33%、85.83%和89.2%,Kappa系数分别为0.836 3、0.802 3和0.847 1,分析认为决策树方法最适宜反演中巴经济走廊荒漠化程度。最后基于决策树方法计算了2000~2015年中巴经济走廊荒漠化程度分布数据,分析结果表明在中巴经济走廊极度和重度荒漠化土地占整个区域的50%~60%,中度和轻度荒漠化土地占20%左右,非荒漠化土地和冰雪水体占20%左右。由于2000年左右,巴基斯坦经历了50 a来最严重的旱灾,2000年的重度和极度荒漠化达到总体面积的61.8%,从2005~2015年极度荒漠化土地有所减少,转化为重度荒漠化土地,有部分轻度荒漠化土地转化为非荒漠化土地。总体来说极度荒漠化程度呈下降趋势。

关键词: 荒漠化中巴经济走廊特征空间决策树MODIS    
Abstract:

Desertification is one of the most serious ecological and environmental problems in the world, especially in the China-Pakistan Economic Corridor (CPEC). Based on MODIS data, this paper extracted key surface feature parameters and quantitatively studies the law and relationship between desertification degree and surface feature parameters. Three remote sensing monitoring models of Albedo-Vegetation feature space and decision tree were constructed, and the desertification degree of CPEC in 2015 was analyzed. The results showed that the overall accuracy of Albedo-MSAVI, Albedo-NDVI and C5.0 methods were 88.33%, 85.83% and 89.2%, respectively. According to the analysis, the decision tree method was the most suitable to invert the desertification degree of CPEC. Based on the C5.0, calculated the distribution data of desertification degree from 2000 to 2015, and analyzed the changes in the desertification degree of the CPEC. The results show that the extreme and severe desertification land in the CPEC accounts for 50% to 60% of the entire region. Mild desertification land accounts for about 20%, and non-desertification land and water bodies account for about 20%. Since 1998~2002, Pakistan experienced the worst drought in 50 years, so extreme desertification and severe desertification in 2000 reached the total area 61.8%. From 2005 to 2015, extreme desertification land had decreased, and it had been converted into severe desertification land, and some mild desertification land had been converted into non-desertification land. Overall, extreme desertification had a downward trend.

Key words: Desertification    China-Pakistan Economic Corridor    Feature space    The decision tree    MODIS
收稿日期: 2020-06-12 出版日期: 2021-09-26
ZTFLH:  X171  
基金资助: 中国科学院信息化专项“寒旱区环境演变研究‘科技领域云’的建设与应用”(XXH13506);国家科技基础条件平台项目“国家特殊环境特殊功能野外观测研究台站共享服务平台”(Y719H71006)
通讯作者: 张耀南     E-mail: myf@lzb.ac.cn;yaonan@lzb.ac.cn
作者简介: 敏玉芳(1983-),女,甘肃临潭人,博士研究生,主要从事荒漠化遥感研究。E?mail:myf@lzb.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
敏玉芳
张耀南
康建芳
冯克庭

引用本文:

敏玉芳,张耀南,康建芳,冯克庭. 基于MODIS影像的中巴经济走廊荒漠化程度时空动态监测研究[J]. 遥感技术与应用, 2021, 36(4): 827-837.

Yufang Min,Yaonan Zhang,Jianfang Kang,Keting Feng. Study on Spatial-temporal Dynamic Monitoring of Degree of Desertification in CPEC based on MODIS Image. Remote Sensing Technology and Application, 2021, 36(4): 827-837.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.4.0827        http://www.rsta.ac.cn/CN/Y2021/V36/I4/827

图1  研究区范围地理位置示意图审图号:GS(2020)4393
图2  Albedo-Vegetation 特征空间[17,20]
图3  2015年中巴经济走廊反照率—植被指数特征空间图
图4  利用NDVI、TVDI和Albedo构建的荒漠化程度分级决策树模型
模型荒漠化程度

极度

荒漠化

重度

荒漠化

中度

荒漠化

轻度

荒漠化

非荒漠化样本点总数
Albedo-MSAVI极度荒漠化1026302113
重度荒漠化23531041
中度荒漠化13192125
轻度荒漠化01233334
非荒漠化01032327
Albedo-NDVI极度荒漠化1005017113
重度荒漠化43421041
中度荒漠化03201125
轻度荒漠化00230234
非荒漠化10042227

DT

(NDVI,TGSI, Albedo)

极度荒漠化1065101113
重度荒漠化33521041
中度荒漠化01212025
轻度荒漠化01129334
非荒漠化10122327
表 1  Albedo-NDVI,Albedo-MSAVI 和 DT 3个模型精度混淆矩阵
模型荒漠化程度生产者精度/%用户精度/%总体精度/%Kappa 系数
Albedo-MSAVI极度荒漠化90.2797.1488.330.836 3
重度荒漠化85.3776.09
中度荒漠化7670.09
轻度荒漠化97.0684.62
非荒漠化85.1979.31
Albedo-NDVI极度荒漠化88.595.2485.830.802 3
重度荒漠化82.9280.95
中度荒漠化8083.3
轻度荒漠化88.2481.08
非荒漠化81.4868.75

DT

(NDVI,TGSI, Albedo)

极度荒漠化93.8196.3689.20.847 1
重度荒漠化85.3783.33
中度荒漠化8480.76
轻度荒漠化85.2985.29
非荒漠化85.1985.19
表2  Albedo-NDVI,Albedo-MSAVI和 DT 模型的荒漠化分类精度
图5  基于不同模型的2015年中巴经济走廊荒漠化程度分级图
荒漠化程度2000年2005年2010年2015年

面积

/km2

百分比

/%

面积

/km2

百分比

/%

面积

/km2

百分比

/%

面积

/km2

百分比

/%

极重度荒漠化576 74046.55494 89339.94401 93831.89455 86036.69
重度荒漠化188 94515.25225 64218.21259 34320.93237 15319.14
中度荒漠化99 1528100 3048.1133 07410.74108 9938.8
轻度荒漠化178 22214.39164 43413.27192 60615.55158 50612.79
非荒漠化135 33611.02189 87115.32193 30515.60220 34617.78
冰雪水体59 3154.7962 5665.0558 4444.7156 8524.58
表3  不同时期中巴经济走廊荒漠化面积对比表
图6  2000~2015年中巴经济走廊荒漠化程度分级图
图7  2000~2015年中巴经济走廊各时期不同程度荒漠化土地面积变化图
图8  2005~2010年中巴经济走廊荒漠化程度变化图
1 Wang Xinyuan, Yang Xiaopeng, Chen Xiangshun, et al. Research on indicators system of desertification monitoring: a case study of Gansu province[J]. Ecological Economy, 2016, 32(7): 174-177.
1 王新源,杨小鹏,陈翔舜,等. 荒漠化监测指标体系的构建——以甘肃省为例[J]. 生态经济, 2016, 32(7): 174-177.
2 Oh K, Jeong Y, Lee D, et al. Determining development density using the urban carrying capacity assessment system[J]. Landscape & Urban Planning, 2005, 73(1): 1-15.
3 Kang W, Liu S. A Review of remote sensing monitoring and quantitative assessment of aeolian desertification[J]. Journal of Desert Research, 2014, 34(5): 1222-1229.
4 Qi J, Chehbouni A, Huete A, et al. A modified soil adjusted vegetation index[J]. Remote Sensing of Environment, 1994, 48(2): 119-126.
5 Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2): 213-224.
6 Albalawi E K, Kumar L. Using remote sensing technology to detect, model and map desertification: a review[J]. Journal of Food, Agriculture & Environment, 2013, 11(2): 791-797.
7 Guo Q, Fu B, Shi P, et al. Satellite monitoring the spatial-temporal dynamics of desertification in response to climate change and human activities across the Ordos plateau, China[J]. Remote Sensing,2017,9(6):525. DOI:10.3390/rs9060525.
doi: 10.3390/rs9060525
8 Wei H, Wang J, Cheng K, et al. Desertification information extraction based on feature space combinations on the Mongolian Plateau[J]. Remote Sensing, 2018, 10(10): 1614. DOI: 10.3390/rs10101614.
doi: 10.3390/rs10101614
9 Zeng N, Yoon J. Expansion of the world's deserts due to vegetation‐albedo feedback under global warming[J]. Geophysical Research Letters, 2009, 36(17):L17401. DOI:10.1029/2009GL039699.
doi: 10.1029/2009GL039699
10 Sheng G L, Harazono Y, Oikawa T, et al. Grassland desertification by grazing and the resulting micrometeorological changes in inner Mongolia[J]. Agricultural & Forest Meteorology, 2000, 102(2): 125-137.
11 Anjum S A, Wang L, Xue L, et al. Desertification in Pakistan: causes, impacts and management[J]. Journal of Food, Agriculture & Environment, 2010, 8(2): 1203-1208.
12 Zhang R, Andam F, Shi G. Environmental and social risk evaluation of overseas investment under the China-Pakistan Economic Corridor[J]. Environmental Monitoring and Assessment,2017,189(6):253. DOI:10.1007/s10661-017-5967-6.
doi: 10.1007/s10661-017-5967-6
13 Chen D, Deng X, Jin G, et al. Land-use-change induced dynamics of carbon stocks of the terrestrial ecosystem in Pakistan[J]. Physics and Chemistry of the Earth, Parts A/b/c, 2017, 101: 13-20. DOI:10.1016/j.pce2017.01.018.
doi: 10.1016/j.pce2017.01.018
14 Liang S, Shuey C J, Russ A L, et al. Narrowband to broadband conversions of land surface Albedo Ⅱ: validation[J]. Remote Sensing of Environment, 2003, 84(1): 25-41.
15 Liang S. Narrowband to broadband conversions of land surface Albedo I: algorithms[J]. Remote Sensing of Environment, 2001, 76(2): 213-238.
16 Feng K, Zhang Y, Tian D, et al. A dataset of monthly temperature vegetation dryness index along the China-Pakistan Economic Corridor from 2000~2017[J].China Scientific Data4(2019).(July 18,2019).DOI:10.11922/csdata.2018.0051.zh.
doi: 10.11922/csdata.2018.0051.zh
17 Zeng Yongnian, Xiang Nanping, Feng Zhaodong, et al. Albedo-NDVI space and remote sensing synthesis index models for desertification monitoring[J]. Scientia Geographica Sinica, 2006, 26(1):75-81.
17 曾永年,向南平,冯兆东,等. Albedo-NDVI特征空间及沙漠化遥感监测指数研究[J]. 地理科学, 2006,26(1): 75-81.
18 Feng Juan, Ding Jianli, Wei Wenyu. A study of soil salinization in Weigan and Kuqa Rivers oasis based on Albedo‐MSAVI feature space[J]. China Rural Water and Hydropower, 2018(2): 147-152.
18 冯娟,丁建丽,魏雯瑜.基于Albedo-MSAVI特征空间的渭库绿洲土壤盐渍化研究[J].中国农村水利水电,2018(2):147-152.
19 Li Yan, Zhou Youyou, Hu Baoqing, et al. Comparative study on developmental characteristics of desertification in typical southern and northern regions based on 3S techniques[J]. Journal of Guangxi Teachers Education University(Natural ence Edition),2017,34(1):82-90.
19 李燕,周游游,胡宝清,等. 基于3S技术的南北方典型区荒漠化演变特征对比研究[J]. 广西师范学院学报(自然科学版), 2017, 34(1): 82-90.
20 Wu Z H,Lei S G, Bian Z F. et al. Study of the desertification index based on the Albedo-MSAVI feature space for semi-arid steppe region[J]. Environmental Earth Science, 2019, 78(6):1-13. DOI:10.1007/s12665-019-8111-9.
doi: 10.1007/s12665-019-8111-9
21 Zhang Yanjun, Tashpolat Tiyip, Xia Jun, et al. Desertification monitoring with remote sensing in the dentral asia:a case of Turkmenistan[J]. Arid Land Geography, 2013, 36(4):724-730.
21 张严俊,塔西甫拉提·特依拜,夏军,等. 中亚地区土地沙漠化遥感监测——以土库曼斯坦为例[J]. 干旱区地理, 2013, 36(4): 724-730.
22 Verstraete M M, Pinty B. Designing optimal spectral indexes for femote sensing applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(5): 1254-1265.
23 Guo B, Wen Y. An optimal monitoring model of desertification in naiman banner based on feature space utilizing Landsat8 oli image[J]. IEEE Access,2019, 8: 4761-4768. DOI: 10.1109/ACCESS.2019.2962909.
doi: 10.1109/ACCESS.2019.2962909
24 Jenks G F. The data model concept in statistical mapping[J]. International Yearbook of Cartography, 1967, 7: 186-190.
25 Xu D,Kang X,Qiu D, et al. Quantitative assessment of desertification using landsat data on a regional scale: a case study in the Ordos Plateau,China[J]. Sensors (basel,Switzerland), 2009,9(3):53-1738.
26 Breiman L, Friedman J, Stone C J. Classification and Regression Trees[M]. Chapman and Hall/CRC,1984.
27 Meng X,Jiang Q,Qi X, et al. Extraction of desertification information in hulun buir based on MODIS image data[J]. Agricultural Science & Technology-hunan, 2012,13(1):233-237.
28 Duan H, Wang T, Xian X, et al. Dynamics of aeolian desertification and its driving forces in the Horqin sandy land, Northern China[J]. Environmental Monitoring & Assessment, 2014, 186(10):6083-6096.
29 Gao Hua, Zhang Jiahua, Xia Xueqi. Drought monitoring by remote sensing over india and Pakistan based on temperature vegetation dryness index[J]. Remote Sensing Information, 2016,31(4):62-68.
29 高华,张佳华,夏学齐.基于温度植被干旱指数的印度和巴基斯坦干旱监测[J].遥感信息,2016,31(4):62-68.
30 Disaster Risk Reduction in Pakistan: The contribution of DEC member agencies, 2010~2012[M]. Springer,Japan,2015: 161-173.
31 Rasul G, Mahmood A, Sadiq A, et al. Vulnerability of the indus delta to climate change in Pakistan[J]. Pakistan Journal of Meteorology, 2012, 8(16): 89-107.
[1] 王晨丞,王永前,王利花. 基于SAR纹理信息的农作物识别研究——以农安县为例[J]. 遥感技术与应用, 2021, 36(2): 372-380.
[2] 汪胜,杨晓峰,马文韬,相坤生,胡蝶. 基于星载微波亮温数据的西北太平洋热带气旋生成预测方法[J]. 遥感技术与应用, 2021, 36(1): 198-207.
[3] 王浩天,汪源,袁强强. 2008~2016年MODIS多角度大气校正气溶胶产品在中国的时空分布及变化趋势[J]. 遥感技术与应用, 2021, 36(1): 217-228.
[4] 王昌博,李爱农,张晓荣,南希,边金虎,Kamran Muhammad. 基于遥感和GIS的中巴经济走廊多发展情景生态风险综合评价[J]. 遥感技术与应用, 2021, 36(1): 65-78.
[5] 雷华锦,李弘毅,王建,郝晓华,赵宏宇,张娟. 基于环境信息和回归模型的青藏高原MODIS积雪面积比例产品制备[J]. 遥感技术与应用, 2020, 35(6): 1303-1311.
[6] 郑琪,邸苏闯,潘兴瑶,刘洪禄,朱永华,张岑,周星. 基于Rapid Eye数据的北京生态涵养区土地利用分类及变化研究[J]. 遥感技术与应用, 2020, 35(5): 1118-1126.
[7] 牟昱璇,邬明权,牛铮,黄文江,杨尽. 南方地区复杂条件下的耕地面积遥感提取方法[J]. 遥感技术与应用, 2020, 35(5): 1127-1135.
[8] 程雨婷,刘昭华,鹿琳琳,刘士彪,李庆亭. 一带一路沿海超大城市热岛时空特征遥感分析[J]. 遥感技术与应用, 2020, 35(5): 1197-1205.
[9] 韦海宁,王维真,黄广辉,徐菲楠,冯姣姣,董磊磊. 基于Himawari-8的气溶胶反演研究[J]. 遥感技术与应用, 2020, 35(4): 797-807.
[10] 魏石梅, 潘竟虎, 妥文亮. 2015年中国PM2.5浓度遥感估算与时空分布特征[J]. 遥感技术与应用, 2020, 35(4): 845-854.
[11] 李超,李雪梅,田亚林,任瑞. 温度植被干旱指数时空融合模型对比[J]. 遥感技术与应用, 2020, 35(4): 832-844.
[12] 董超,赵庚星. 时序数据集构建质量对土地覆盖分类精度的影响研究[J]. 遥感技术与应用, 2020, 35(3): 558-566.
[13] 龙爽,郭正飞,徐粒,周华真,方伟华,许映军. 基于Google Earth Engine的中国植被覆盖度时空变化特征分析[J]. 遥感技术与应用, 2020, 35(2): 326-334.
[14] 郑贵洲,熊良超,廖艳雯,王红平. 利用MODIS数据反演南海南部海表温度及时空变化分析[J]. 遥感技术与应用, 2020, 35(1): 132-140.
[15] 赵春亮,许文波,范锦龙. FY-3C中分辨率成像光谱仪数据的窄波段地表反照率验证研究[J]. 遥感技术与应用, 2020, 35(1): 153-162.