Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (5): 1044-1056    DOI: 10.11873/j.issn.1004-0323.2021.5.1044
叶绿素荧光专栏     
全球日光诱导叶绿素荧光卫星遥感产品研究进展与展望
孙忠秋1(),高显连1,杜珊珊2,刘新杰2()
1.国家林业和草原局调查规划设计院卫星处,北京 100714
2.中国科学院空天信息创新研究院数字地球重点实验室,北京 100094
Research Progress and Prospective of Global Satellite-based Solar-induced Chlorophyll Fluorescence Products
Zhongqiu Sun1(),Xianlian Gao1,Shanshan Du2,Xinjie Liu2()
1.Academy of Inventory and Planning,National Forestry and Grassland Administration,China 100714
2.Key Laboratory of Digital Earth Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China
 全文: PDF(1634 KB)   HTML
摘要:

卫星反演的日光诱导叶绿素荧光(Solar-Induced chlorophyll Fluorescence, SIF)是全球植被生产力遥感监测的理想工具。现有的诸多大气成分探测卫星的高光谱载荷可以满足卫星平台SIF遥感探测的需求,中国和欧洲也计划发射专门的SIF卫星探测器。国内外学者生产了一系列全球SIF卫星遥感产品,并开展了SIF产品时空尺度扩展研究,为SIF应用研究提供了丰富的数据源,但现有的全球SIF产品仍然存在诸多局限性。系统梳理了现有和计划发射的SIF卫星载荷、目前公开发布的SIF卫星遥感产品、以及SIF时空尺度扩展产品,并从应用需求的角度出发,总结了现有全球SIF产品存在的问题和后续SIF卫星探测计划的发展方向,为现有SIF卫星产品的应用以及未来SIF探测卫星载荷方案的设计提供参考。

关键词: 日光诱导叶绿素荧光卫星产品尺度扩展研究进展    
Abstract:

Solar-Induced chlorophyll Fluorescence (SIF) is an ideal indicator of global vegetation productivity. Although there is still no satellite-based sensor designed for SIF monitoring specifically, there are a series of atmospheric monitoring hyperspectral sensors which have potential for SIF retrieval. And a number of satellite-based global SIF products have been developed and published. Furthermore, some spatial and temporal extended SIF products have also been developed to better match the requirements of SIF application. The design of specific satellite-based SIF sensors is already in progress in both China and Europe. Although the products of satellite-based SIF products developed fast in recent years, lots of uncertainties and limitations remains for application. In this paper, the existing and in-coming satellite-based sensors for SIF detection, the published global SIF products were summarized. From the perspective of application requirements, the existing limitations of global SIF products and the development direction in the future were analyzed. This paper can serve as a reference for the application of existing SIF satellite products and the design of future satellite-based SIF exploring missions.

Key words: Solar-Induced chlorophyll Fluorescence(SIF)    Satellite products    Spatiotemporal continuous products    Research progress
收稿日期: 2020-07-28 出版日期: 2021-12-07
ZTFLH:  TP75  
基金资助: 国家重点研发计划项目“粮食作物生长监测诊断与精确栽培技术”(2016YFD0300601);国家林草局自主研发计划项目“陆地碳卫星超光谱成像仪端对端仿真平台研制”(LC?1?11);国家自然科学基金项目“反射率与叶绿素荧光遥感协同的冬小麦条锈病早期诊断研究”(41871239)
通讯作者: 刘新杰     E-mail: qiuqiu8708@163.com;liuxj@radi.ac.cn
作者简介: 孙忠秋(1987-),女,黑龙江哈尔滨人,博士,高级工程师,主要从事林业信息技术及林业遥感应用研究。E?mail:qiuqiu8708@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙忠秋
高显连
杜珊珊
刘新杰

引用本文:

孙忠秋,高显连,杜珊珊,刘新杰. 全球日光诱导叶绿素荧光卫星遥感产品研究进展与展望[J]. 遥感技术与应用, 2021, 36(5): 1044-1056.

Zhongqiu Sun,Xianlian Gao,Shanshan Du,Xinjie Liu. Research Progress and Prospective of Global Satellite-based Solar-induced Chlorophyll Fluorescence Products. Remote Sensing Technology and Application, 2021, 36(5): 1044-1056.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.5.1044        http://www.rsta.ac.cn/CN/Y2021/V36/I5/1044

图1  叶绿素荧光反演的夫琅和费暗线填充原理示意图[10]
图2  0.04 nm和0.3 nm光谱分辨率条件下常用的卫星SIF遥感反演窗口
卫星/传感器光谱分辨率 /nm

可用波段范围

/nm

空间采样方式过赤道时间空间分辨率 /km信噪比发射时间参考文献
ERS-2 GOME0.33595~793连续10:3040×3201995.4[36]
ENVISAT SCIAMACHY0.48650~790连续10:0030×2402 8002002.3[37]
MetOp-A/B/C GOME-20.5650~790连续9:30

40×80

40×40

2 0002007.1/2012.9/2018.11[38]
GOSAT./GOSAT2 TANSO-FTS0.025755~775离散点13:0010.5/9.73002009.1/2018.10[39]
OCO-2/ OCO-30.042757~775窄条带13:301.3×2.255002014.7/2019.5[8]
TanSat0.044758~778窄条带13:3023602016.12[34]
Sentinel-5P TROPOMI0.38675~775连续13:303.5×72 6602017.10[15]
表1  目前具备荧光探测潜力的主要星载传感器
图3  现有SIF卫星遥感数据源覆盖的时间范围
产品名称时空属性反演算法、反演窗口和波段SIF产品波长 位置产品下载地址参考文献
NASA GOME-F

GOME: 1995~2003;

GOME-2: 2007~2019;

2级:原始轨道日值

3级:0.5°格网月均值

主成分分析

712~747 nm

740 nm

https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/[13,32,40]
NASA SCIAMACHY_F

2003~2012

2级:原始轨道日值

3级:1°格网月均值

主成分分析

712~747 nm

734 nmhttps://avdc.gsfc.nasa.gov/pub/data/satellite/Envisat/SCIAMACHY_F/[13,32,40]
GFZ GOME-2

2007.1~2016.1

非格网化:原始轨道日值

格网化:0.5°格网日值

主成分分析

735~758 nm

740 nmftp://DOIdata.gfz-potsdam.de/open/GlobFluo/GOME-2[14]
GFZ SCIAMACHY

2002.8~2012.3

非格网化:原始轨道日值

格网化:1.5°格网日值

主成分分析

735~758 nm

740 nmftp://DOIdata.gfz-potsdam.de/open/GlobFluo/SCIAMACHY[14]
KNMI GOME-2 SIFTER

2007~2018

非网格化:原始轨道日值;

网格化: 0.5°格网月均值

主成分分析

712~783 nm

737 nmhttp://www.temis.nl/surface/sif.html[41]
OCO-2

2014.9至今

原始轨道日值

光谱拟合

758~759 nm

769.8~770.4 nm

757 nm、 771 nmhttps://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_SIF_8r/summary[8]
OCO-3

2019.8至今

原始轨道日值

光谱拟合

758.1~759.2 nm

769.6~770.3 nm

757 nm、 771 nmhttps://disc.gsfc.nasa.gov/datasets/OCO3_L2_Lite_FP_EarlyR/summary[42]
TanSat

2017.3至今

原始轨道日值

奇异值分解

757.4~759.3 nm

769.5~770.3 nm

757 nm、 771 nmhttp://www.geodata.cn/data/datadetails.html?dataguid=3695497&docId=4248[34]
Caltech TROPOMI

2018至今

非格网化:原始轨道日值

格网化:0.2°格网日值

主成分分析

743~758 nm

663~685.3 nm

683 nm

740 nm

ftp://fluo.gps.caltech.edu/data/tropomi/[15,43]
TROPOSIF

2018至今

非格网化:原始轨道日值

主成分分析

743~758 nm

735~758 nm

740 nmhttps://s5p-troposif.noveltis.fr/data-access/[44]
表2  目前具备荧光探测潜力的主要星载传感器现有公开发布的全球SIF卫星遥感产品
卫星/传感器光谱分辨率 /nm

可用波段范围

/nm

过赤道时间空间分辨率 /km信噪比发射时间参考文献
FLEX FLORIS0.3~2.0500~78010:000.3×0.3300~1 2002022[46]
TECIS-1 SIFIS0.3670~78010:302×2>3002021[47]
SESGS GeoCarb0.05758~772静止轨道10×10>2002022[48]
TEMPO0.6540~740静止轨道2.5×5-2022[49]
Sentinel-4 UVN0.12750~775静止轨道8×8>5002021[50]
表3  未来具备荧光探测潜力的主要星载传感器
产品名称原始SIF数据源解释变量数据下载地址参考文献
CSIFOCO-2MODIS 1-4波段反射率https://DOI.org/10.6084/m9.figshare.6387494[19]
SIFˉOCO2_005OCO-2MODIS 1-7波段反射率https://cornell.app.box.com/s/cavtg50y80udbdirg022gm5whugmth02[20]
GOSIFOCO-2EVI,PAR,VPD、气温http://globalecology.unh.edu/[21]
TanSat SIF空间扩展产品TanSatMODIS 1-4波段反射率、NDVI、太阳天顶角、气温https://zenodo.org/record/3884309[23]
RSIFGOME-2MODIS 1-4波段反射率https://gentinelab.eee.columbia.edu/content/datasets[18]
降尺度GOME2-SIFGOME-2NDVI、EVI、 NIRv、ET、NDWI、LSThttps://DOI.org/10.2905/21935FFC-B797-4BEE-94DA-8FEC85B3F9E1[16-17]
SIFˉ005SCIAMACHY,GOME-2MODIS 1-7波段反射率https://cornell.box.com/s/gkp4moy4grvqsus1q5oz7u5lc30i7o41[22]
表4  现有的0.05度空间分辨率SIF扩展产品
1 Gu L, Han J, Wood J D, et al. Sun-induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions[J]. New Phytol., 2019, 223(3): 1179-1191. DOI: 10.1111/nph.15796.
doi: 10.1111/nph.15796
2 Liu Liangyun. Principle and application of vegetation quantitative remote sensing [M]. Beijing: Science Press,2014.
2 刘良云. 植被定量遥感原理与应用[M]. 北京: 科学出版社,2014.
3 Zhang Zhaoying,Wang Songhan,Qiu Bo,et al.Retrieval of sun-induced chlorophyll fluorescence and advancements in carbon cycle application [J]. Journal of Remote Sensing,2019,23(1): 37-52.
3 章钊颖,王松寒,邱博,等. 日光诱导叶绿素荧光遥感反演及碳循环应用进展[J]. 遥感学报,2019,23(1):37-52.
4 Guanter L, Zhang Y, Jung M, et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence[J]. Proc. Natl. Acad. Sci. U. S. A., 2014: 201320008. DOI: 10.1073/pnas.1320008111.
doi: 10.1073/pnas.1320008111
5 Sun Y, Frankenberg C, Wood J D, et al. OCO-2 advances photosynthesis observation from space via Solar-Induced Chlorophyll Fluorescence[J]. Science, 2017, 358(6360): eaam5747. DOI: 10.1126/science.aam5747.
doi: 10.1126/science.aam5747
6 Mohammed G H, Colombo R, Middleton E M, et al. Remote sensing of Solar-Induced Chlorophyll Fluorescence (SIF) in vegetation:50 years of progress[J].Remote Sensing of En-vironment,2019,231:111177. DOI:10.1016/j.rse.2019. 04.030.
doi: 10.1016/j.rse.2019. 04.030
7 Kraft S, Del Bello U, Bouvet M, et al. FLEX: ESA's Earth Explorer 8 candidate mission[C]∥ Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, 2012: 7125-7128.
8 Frankenberg C, O'dell C, Berry J, et al. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2[J]. Remote Sensing of Environment, 2014, 147: 1-12. DOI: 10.1016/j.rse.2014.02.007.
doi: 10.1016/j.rse.2014.02.007
9 Du S, Liu L, Liu X, et al. The Solar-Induced Chlorophyll Fluorescence Imaging Spectrometer (SIFIS) Onboard the First Terrestrial Ecosystem Carbon Inventory Satellite (TECIS-1): Specifications and Prospects[J]. Sensors, 2020, 20(3): 815. DOI: 10.3390/s20030815.
doi: 10.3390/s20030815
10 Liu Xinjie. Retrieval of solar-induced chlorophyll fluorescence by remote sensing[D]. Beijing: University of Chinese Academy of Sciences, 2016.
10 刘新杰. 日光诱导叶绿素荧光的遥感反演研究[D]. 北京: 中国科学院大学,2016.
11 Joiner J, Yoshida Y, Vasilkov A P, et al. First observations of global and seasonal terrestrial chlorophyll fluorescence from space[J]. Biogeosciences, 2011, 8(3): 637-651. DOI: 10.5194/bg-8-637-2011.
doi: 10.5194/bg-8-637-2011
12 Joiner J, Yoshida Y, Vasilkov A P, et al. Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects: simulations and space-based observations from SCIAMACHY and GOSAT[J]. Atmos. Meas. Tech., 2012, 5(4): 809-829. DOI: 10.5194/amt-5-809-2012.
doi: 10.5194/amt-5-809-2012
13 Joiner J, Yoshida Y, Guanter L, et al. New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY[J]. Atmos. Meas. Tech., 2016, 9(8): 3939-3967. DOI: 10.5194/amt-9-3939-2016.
doi: 10.5194/amt-9-3939-2016
14 Köhler P, Guanter L, Joiner J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data[J]. Atmos. Meas. Tech., 2015, 8(6): 2589-2608. DOI: 10.5194/amt-8-2589-2015.
doi: 10.5194/amt-8-2589-2015
15 Köhler P, Frankenberg C, Magney T S, et al. Global Retrievals of Solar‐Induced Chlorophyll Fluorescence With TROPOMI: First Results and Intersensor Comparison to OCO‐2[J]. Geophys. Res. Lett., 2018, 45(19): 10,456-10,463. DOI: 10.1029/2018GL079031.
doi: 10.1029/2018GL079031
16 Duveiller G, Cescatti A. Spatially downscaling Sun-Induced chlorophyll Fluorescence leads to an improved temporal correlation with gross primary productivity[J]. Remote Sensing of Environment,2016,182:72-89. DOI: 10.1016/j.rse.2016. 04.027.
doi: 10.1016/j.rse.2016. 04.027
17 Duveiller G, Filipponi F, Walther S, et al. A spatially downscaled Sun-Induced Fluorescence global product for enhanced monitoring of vegetation productivity[J]. Earth System Science Data, 2020, 12(2): 1101-1116. DOI: 10.5194/essd-12-1101-2020.
doi: 10.5194/essd-12-1101-2020
18 Gentine P, Alemohammad S H. Reconstructed Solar-Induced Fluorescence: A Machine Learning Vegetation Product Based on MODIS Surface Reflectance to Reproduce GOME-2 Solar-Induced Fluorescence[J]. Geophys. Res. Lett., 2018, 45(7): 3136-3146. DOI: 10.1002/2017GL076294.
doi: 10.1002/2017GL076294
19 Zhang Y, Joiner J, Alemohammad S H, et al. A global spatially Contiguous Solar-Induced Fluorescence (CSIF) dataset using neural networks[J]. Biogeosciences, 2018, 15(19): 5779-5800. DOI: 10.5194/bg-15-5779-2018.
doi: 10.5194/bg-15-5779-2018
20 Yu L, Wen J, Chang C, et al. High‐resolution global contiguous SIF of OCO‐2[J]. Geophys. Res. Lett., 2019, 46(3): 1449-1458. DOI: 10.1029/2018GL081109.
doi: 10.1029/2018GL081109
21 Li X, Xiao J. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence derived from OCO-2, MODIS, and reanalysis data[J]. Remote Sensing, 2019, 11(5): 517. DOI: 10.3390/rs11050517.
doi: 10.3390/rs11050517
22 Wen J, Köhler P, Duveiller G, et al. A framework for harmonizing multiple satellite instruments to generate a long-term global high Spatial-resolution Solar-Induced chlorophyll Fluorescence (SIF)[J]. Remote Sensing of Environment, 2020, 239: 111644. DOI: 10.1016/j.rse.2020.111644.
doi: 10.1016/j.rse.2020.111644
23 Ma Y, Liu L, Chen R, et al. Generation of a global spatially continuous TanSat Solar-Induced Chlorophyll Fluorescence product by considering the impact of the solar radiation intensity[J]. Remote Sensing,2020,12(13):2167. DOI: 10.3390/ rs12132167.
doi: 10.3390/ rs12132167
24 Plascyk J A, Gabriel F C. The fraunhofer line discriminator Mk II – an airborne instrument for precise and standardized ecological luminescence measurement[J]. IEEE. T. Instrum. Meas., 1975,24(4): 306-313. DOI: 10.1109/TIM.1975. 4314448.
doi: 10.1109/TIM.1975. 4314448
25 Guanter L, Alonso L, Gómez-Chova L, et al. Estimation of solar-induced vegetation fluorescence from space measurements[J]. Geophys. Res. Lett., 2007, 34(8). DOI: 10.1029/2007GL029289.
doi: 10.1029/2007GL029289
26 Guanter L, Alonso L, Gómez-Chova L, et al. Developments for vegetation fluorescence retrieval from spaceborne high-resolution spectrometry in the O2-A and O2-B absorption bands[J]. J. Geophys. Res., 2010, 115(D19). DOI: 10.1029/2009JD013716.
doi: 10.1029/2009JD013716
27 Cogliati S, Rossini M, Julitta T, et al. Continuous and long-term measurements of reflectance and sun-induced chlorophyll fluorescence by using novel automated field spectroscopy systems[J]. Remote Sensing of Environment,2015. DOI: 10.1016/j.rse.2015.03.027.
doi: 10.1016/j.rse.2015.03.027
28 Verhoef W, Van Der Tol C, Middleton E M. Vegetation canopy fluorescence and reflectance retrieval by model inversion using optimization[C]∥ 5th Int. Workshop on Remote Sensing of Vegetation Fluorescence, 2014.
29 Frankenberg C, Butz A, Toon G C. Disentangling chlorophyll fluorescence from atmospheric scattering effects in O2A-band spectra of reflected sun-light[J]. Geophys. Res. Lett., 2011, 38(3). DOI: 10.1029/2010GL045896.
doi: 10.1029/2010GL045896
30 Zhang Lifu,Wang Siheng,Huang Changping.Top-of-atmosphere hyperspectral remote sensing of solar-induced chlorophyll fluorescence: a review of methods[J]. Journal of Remote Sensing,2018,22(1):1-12.
30 张立福,王思恒,黄长平.太阳诱导叶绿素荧光的卫星遥感反演方法[J]. 遥感学报,2018,22(1): 1-12.
31 Guanter L, Frankenberg C, Dudhia A, et al. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements[J]. Remote Sensing of Environment, 2012, 121: 236-251. DOI: 10.1016/j.rse.2012.02.006.
doi: 10.1016/j.rse.2012.02.006
32 Joiner J, Guanter L, Lindstrot R, et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate spectral resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2[J]. Atmos. Meas. Tech., 2013, 6(10): 2803-2823. DOI: 10.5194/amt-6-2803-2013.
doi: 10.5194/amt-6-2803-2013
33 Ji Menghao,Tang Bohui,Li Zhaoliang. Review of solar-induced chlorophyll fluorescence retrieval methods from satellite data[J]. Remote Sensing Technology and Application, 2019,34(3):455-466.
33 纪梦豪,唐伯惠,李召良.太阳诱导叶绿素荧光的卫星遥感反演方法研究进展[J]. 遥感技术与应用, 2019,34(3):455-466.
34 Du S, Liu L, Liu X, et al. Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite[J]. Science Bulletin, 2018, 63(22): 1502-1512. DOI: 10.1016/j.scib.2018.10.003.
doi: 10.1016/j.scib.2018.10.003
35 Guanter L, Aben I, Tol P, et al. Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence[J]. Atmos. Meas. Tech., 2015, 8(3): 1337-1352. DOI: 10.5194/amt-8-1337-2015.
doi: 10.5194/amt-8-1337-2015
36 Parazoo N C, Frankenberg C, Köhler P, et al. Towards a Harmonized Long‐Term Spaceborne Record of Far‐Red Solar‐Induced Fluorescence[J]. Journal of Geophysical Research: Biogeosciences, 2019. DOI: 10.1029/2019JG005289.
doi: 10.1029/2019JG005289
37 Lichtenberg G, Kleipool Q, Krijger J, et al. SCIAMACHY Level 1 data: calibration concept and in-flight calibration[J]. Atmospheric Chemistry and Physics, 2006, 6(12): 5347-5367. DOI: 10.5194/acp-6-5347-2006.
doi: 10.5194/acp-6-5347-2006
38 Callies J, Corpaccioli E, Eisinger M, et al. GOME-2-Metop's second-generation sensor for operational ozone monitoring[J]. ESA bulletin, 2000, 102: 28-36.
39 Kuze A, Suto H, Nakajima M, et al. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring[J]. Appl. Optics., 2009, 48(35): 6716-6733. DOI: 10.1364/ao.48.006716.
doi: 10.1364/ao.48.006716
40 Joiner J, Yoshida Y, Vasilkov A P, et al. The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange[J]. Remote Sensing of Environment, 2014, 152: 375-391. DOI: 10.1016/j.rse.2014.06.022.
doi: 10.1016/j.rse.2014.06.022
41 Sanders A F, Verstraeten W W, Kooreman M L, et al. Spaceborne Sun-Induced Vegetation Fluorescence Time Series from 2007 to 2015 Evaluated with Australian Flux Tower Measurements[J]. Remote Sensing, 2016, 8(11): 895. DOI: 10.3390/rs8110895.
doi: 10.3390/rs8110895
42 Eldering A, Taylor T E, O'Dell C W, Pavlick R. The OCO-3 mission: measurement objectives and expected performance based on 1 year of simulated data[J]. Atmospheric Measurement Techniques, 2019,12:2341-2370. DOI: 10.5194/amt-12-2341-2019.
doi: 10.5194/amt-12-2341-2019
43 Köhler P, Behrenfeld M J, Landgraf J, et al. Global Retrievals of Solar-Induced Chlorophyll Fluorescence at Red Wavelengths With TROPOMI[J]. Geophys. Res. Lett., 2020: e2020GL087541. DOI: 10.1029/2020GL087541.
doi: 10.1029/2020GL087541
44 Guanter L, Bacour C, Schneider A, et al. The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission[J]. Earth System Science Data Discussions, 2021: 1-27. DOI: 10.1029/2019JG005534.
doi: 10.1029/2019JG005534
45 Wolanin A, Rozanov V V, Dinter T, et al. Global retrieval of marine and terrestrial chlorophyll fluorescence at its red peak using hyperspectral top of atmosphere radiance measurements: Feasibility study and first results[J]. Remote Sensing of Environment, 2015. DOI: 10.1016/j.rse.2015.05.018.
doi: 10.1016/j.rse.2015.05.018
46 Kraft S, Bello U D, Drusch M, et al. FLORIS: The Fluorescence Imaging Spectrometer of the Earth Explorer Mission Candidate FLEX[C]∥ 5th International Workshop on Remote Sensing of Vegetation Fluorescence, 2014. DOI: 10.1117/12.2309086.
doi: 10.1117/12.2309086
47 Wang Siheng,Huang Changping,Zhang Lifu,et al. Designment and assessment of Far-Red solar-induced chlorophyll fluorescence retrieval method for the terrestrial ecosystem carbon inventory satellite[J]. Remote Sensing Technology and Application, 2019,34(3):476-487.
47 王思恒,黄长平,张立福,等. 陆地生态系统碳监测卫星远红波段叶绿素荧光反演算法设计[J]. 遥感技术与应用,2019,34(3):476-487.
48 Moore Iii B, Crowell S M R, Rayner P J, et al. The Potential of the Geostationary Carbon Cycle Observatory (GeoCarb) to Provide Multi-scale Constraints on the Carbon Cycle in the Americas[J]. Frontiers in Environmental Science, 2018, 6(109). DOI: 10.3389/fenvs.2018.00109.
doi: 10.3389/fenvs.2018.00109
49 Geddes J A, Martin R V, Bucsela E J, et al. Stratosphere–troposphere separation of nitrogen dioxide columns from the TEMPO geostationary satellite instrument[J]. Atmos. Meas. Tech., 2018, 11(11): 6271-6287. DOI: 10.5194/amt-11-6271-2018.
doi: 10.5194/amt-11-6271-2018
50 Gulde S, Kolm M, Smith D, et al. Sentinel 4: a geostationary imaging UVN spectrometer for air quality monitoring: status of design, performance and development[M]. 10563. SPIE, 2017.
51 Porcar-Castell A, Tyystjärvi E, Atherton J, et al. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges[J]. J. Exp. Bot., 2014: eru191. DOI: 10.1093/jxb/eru191.
doi: 10.1093/jxb/eru191
52 Badgley G, Field C B, Berry J A. Canopy near-infrared reflectance and terrestrial photosynthesis[J]. Science Advances, 2017, 3(3): e1602244. DOI: 10.1126/sciadv.1602244.
doi: 10.1126/sciadv.1602244
53 Yang P, Van Der Tol C. Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance[J]. Remote Sensing of Environment, 2018, 209: 456-467. DOI: 10.1016/j.rse.2018.02.029.
doi: 10.1016/j.rse.2018.02.029
54 Liu X, Guanter L, Liu L, et al. Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model[J]. Remote Sensing of Environment,2019,231:110772. DOI: 10.1016/j.rse.2018. 05.035.
doi: 10.1016/j.rse.2018. 05.035
55 Zeng Y, Badgley G, Dechant B, et al. A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence[J]. Remote Sensing of Environment, 2019: 111209. DOI: 10.1016/j.rse.2019.05.028.
doi: 10.1016/j.rse.2019.05.028
56 Liu X, Liu L, Hu J, et al. Improving the potential of red SIF for estimating GPP by downscaling from the canopy level to the photosystem level[J]. Agr. Forest. Meteorol., 2020, 281: 107846. DOI: 10.1016/j.agrformet.2019.107846.
doi: 10.1016/j.agrformet.2019.107846
57 Dechant B, Ryu Y, Badgley G, et al. Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops[J]. Remote Sensing of Environment,2020,241:111733. DOI: 10.1016/j.rse.2020. 111733.
doi: 10.1016/j.rse.2020. 111733
58 Wu G, Guan K, Jiang C, et al. Radiance-based NIRv as a proxy for GPP of corn and soybean[J]. Environmental Research Letters, 2020, 15(3): 034009. DOI: 10.1088/1748-9326/ab65cc.
doi: 10.1088/1748-9326/ab65cc
59 Baldocchi D D, Ryu Y, Dechant B, et al. Outgoing Near‐Infrared Radiation From Vegetation Scales With Canopy Photosynthesis Across a Spectrum of Function, Structure, Physiological Capacity, and Weather[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(7). DOI: 10.1029/2019JG005534.
doi: 10.1029/2019JG005534
[1] 金航,竞霞,高媛,刘良云. 遥感探测小麦条锈病严重度的GBRT模型研究[J]. 遥感技术与应用, 2021, 36(2): 411-419.
[2] 严欣荣,官凤英. 竹资源遥感监测研究进展[J]. 遥感技术与应用, 2020, 35(4): 731-740.
[3] 陈思媛, 竞霞, 董莹莹, 刘良云. 基于日光诱导叶绿素荧光与反射率光谱的小麦条锈病探测研究[J]. 遥感技术与应用, 2019, 34(3): 511-520.
[4] 刘润红,梁士楚,赵红艳,漆光超,李丽香,姜勇,牛振国. 中国滨海湿地遥感研究进展[J]. 遥感技术与应用, 2017, 32(6): 998-1011.
[5] 刘青瑞,居为民,张永光. 日光诱导叶绿素荧光估算中国典型生态系统总初级生产力的能力[J]. 遥感技术与应用, 2017, 32(2): 363-373.
[6] 王芳,陶建军,姜良美. 农作物覆盖地表微波遥感模型研究进展[J]. 遥感技术与应用, 2011, 26(2): 255-262.
[7] 张 毅, 蒋兴伟, 林明森, 宋清涛. 合成孔径雷达海面风场反演研究进展[J]. 遥感技术与应用, 2010, 25(3): 423-429.
[8] 张 岩,段民征, 韩志刚, 吕达仁. 氧气A吸收带大气遥感应用研究进展[J]. 遥感技术与应用, 2010, 25(2): 288-295.
[9] 李福建 ,马安青 ,丁原东 ,杨俊杰,焦俊超,刘乐军 . 基于Landsat数据的城市热岛效应研究[J]. 遥感技术与应用, 2009, 24(4): 553-558.
[10] 周德民, 宫辉力, 胡金明, 吴丰林. 中国湿地卫星遥感的应用研究[J]. 遥感技术与应用, 2006, 21(6): 577-583.