Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (6): 1350-1360    DOI: 10.11873/j.issn.1004-0323.2022.6.1350
冰雪遥感专栏     
中国天山积雪物候演变及驱动因素辨析
张博1,2,3(),李雪梅1,2,3(),秦启勇1,2,3
1.兰州交通大学 测绘与地理信息学院,甘肃 兰州 730070
2.甘肃省地理国情监测工程实验室,甘肃 兰州 730070
3.地理国情监测技术应用国家地方联合工程研究中心,甘肃 兰州 730070
Evolution and Driving Factors of Snow Phenology in the Chinese Tianshan Mountainous Region
Bo Zhang1,2,3(),Xuemei Li1,2,3(),Qiyong Qin1,2,3
1.Faculty of Geomatics,Lanzhou Jiaotong University,Lanzhou 730070,China
2.Gansu Provincial Engineering Laboratory for National Geographic State Monitoring,Lanzhou 730070,China
3.National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring,Lanzhou 730070,China
 全文: PDF(6663 KB)   HTML
摘要:

厘清中国天山积雪物候时空演变特征对冰冻圈气候变化适应、生态文明建设以及固体水资源可持续发展具有重要意义。研究基于2002—2017年MODIS逐日无云积雪面积产品,采用逐像元统计方法计算每个水文年内中国天山积雪持续时间(Snow Cover Duration, SCD)、开始日期(Snow Onset Date, SOD)及结束日期(Snow End Date, SED),并结合气象资料采用趋势分析方法分析了积雪物候时空格局及其对地形和气候变化的响应。结果表明:天山积雪物候的空间格局及变化趋势存在差异性,SCD呈西高东低、北高南低的分布格局,且高海拔地区SOD较早,SED较晚。中部和西部的SOD呈提前趋势,巴音布鲁克大草原的SOD提前趋势较为明显,西南部、北部及东部地区的SOD呈推迟趋势;中部地区的SED呈推迟趋势。海拔5 000 m以下,SCD、SOD及SED随海拔变化的平均梯度分别为4.93 d/100 m、-1.64 d/100 m和2.94 d/100 m,SCD的增长趋势在2 500—3 000 m达到最大,随海拔的升高SCD增长的趋势逐渐缩减,SED对地形变化的响应与SCD基本相似,但海拔对SED的影响较SCD弱。天山秋季增温和变湿是SOD推迟的主要原因,春季增温可促进SED提前,而春季变湿有助于SED推迟。

关键词: 积雪物候地形变化气候变化中国天山    
Abstract:

Due to the lack of studies on phenological evolution and driving factors of snow cover in the Chinese Tianshan Mountainous Region (CTMR), this study calculated the number of Snow Cover Days (SCD), Snow Onset Date (SOD) and Snow End Date (SED) in the CTMR in each hydrological year on a pixel-by-pixel basis based on the daily cloud-free snow area products of MODIS from 2002 to 2017. Then combined the temperature and precipitation data to analyze the temporal and spatial characteristics of snow phenology and its response to topography and climate change. The results were followed: The spatial distribution of snow phenology in the CTMR was different. SCD presented a distribution pattern of high in the west and low in the east, high in the north and low in the south. In high-altitude areas, SOD was earlier and SED was later. SOD in the central and western regions showed an advance trend, in which the advance trend in Bayinbulak prairie was obvious. The delayed SOD happened in southwest slope, north slope and eastern region. And the delayed SED occurred in the middle and ridgeline areas. Below 5 000 m asl, the average gradients of SCD, SOD and SED with altitude were 4.93 d/100 m, -1.64 d/100 m and 2.94 d-1.64 d/100 m, respectively. The growth trend of SCD reached the maximum at 2 500-3 000 m, and that of SED gradually decreased with the increase of altitude. The response of SED to topographic change was similar to that of SCD, but the impact of altitude on SED was weaker than that of SCD. The warming and wetting in autumn were the main reason for the postponement of SOD in the CTMR. And the warming in spring can promote the advance of SED, while wetting in spring can contribute to the postponement of SED. This study can effectively monitor the SOD and SED, reveal the climate change, and provide significant information support for the prediction of river runoff and the early warning of natural disasters such as flood and debris flow.

Key words: Snow Phenology    Topography    Climate Change    Chinese Tianshan Mountainous Region
收稿日期: 2021-10-27 出版日期: 2023-02-15
ZTFLH:  P407  
基金资助: 国家自然科学基金项目(41761014);兰州交通大学“百名青年优秀人才培养计划”,兰州交通大学优秀平台支持(201806)
通讯作者: 李雪梅     E-mail: 18235118550@163.com;lixuemei@lzjtu.edu.cn
作者简介: 张 博(1996-),男,内蒙古乌兰察布人,硕士研究生,主要从事积雪遥感研究。E?mail:18235118550@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张博
李雪梅
秦启勇

引用本文:

张博,李雪梅,秦启勇. 中国天山积雪物候演变及驱动因素辨析[J]. 遥感技术与应用, 2022, 37(6): 1350-1360.

Bo Zhang,Xuemei Li,Qiyong Qin. Evolution and Driving Factors of Snow Phenology in the Chinese Tianshan Mountainous Region. Remote Sensing Technology and Application, 2022, 37(6): 1350-1360.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.6.1350        http://www.rsta.ac.cn/CN/Y2022/V37/I6/1350

图1  研究区地形图审图号:GS(2016)1554
图2  积雪覆盖率的变化
图3  天山积雪物候参数的时空分布、变化趋势及显著性分布
SCD属性覆盖比例/%平均海拔/m
0—10不稳定(非周期)17.521 839
11—60不稳定(周期)17.632 159
61—120稳定18.492 333
121—180稳定14.312 907
181—240稳定10.193 454
241—290稳定6.813 885
291—330稳定6.274 044
331—365稳定8.784 555
表1  不同SCD区域的属性、覆盖比例及平均海拔
图4  不同海拔的积雪物候参数变化及趋势
图5  不同坡向的积雪物候变化及趋势
图6  1970—2017年天山平均气温和降水空间分布及变化趋势
图7  天山积雪物候参数与气象因素的相关性及显著性面积分布
1 Allchin M I, Déry Stephen J. A spatio-temporal analysis of trends in Northern Hemisphere snow-dominated area and duration,1971-2014[J]. Annals of Glaciology,2017,58(75pt1): 21-35.DOI:10.1017/aog.2017.47 .
doi: 10.1017/aog.2017.47
2 Barnett T P, Adam J C, Lettenmaier D P. Potential impact of a warming climate on water availability in snow-dominated regions[J]. Nature, 2005, 438(7066): 303-309.
3 Huss M, Bookhagen B, Huggel C, et al. Toward mountains without permanent snow and ice[J]. Earth’s Future, 2017, 5(5): 418-435.
4 Bormann K J, Brown R D, Derksen C, et al. Estimating snow-cover trends from space[J]. Nature Climate Change, 2018,8:924-928.DOI:10.1038/s41558-018-0318-3 .
doi: 10.1038/s41558-018-0318-3
5 Bulygina O N, Groisman P Y,Razuvaev,et al.Changes in snow cover characteristics over Northern Eurasia since 1966[J].Environmental Research Letters,2011,6:045204. DOI:10. 1088/1748-9326/6/4/045204 .
doi: 10. 1088/1748-9326/6/4/045204
6 Choi G, Robinson D A, Kang S. Changing Northern Hemisphere Snow Seasons[J]. Journal of Climate, 2010, 23(19): 5305-5310.
7 Peng S, Piao S, Ciais P, et al. Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades[J]. Environmental Research Letters, 2013, 8(1):1880-1885.
8 Chen X, Liang S, Cao Y, et al. Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001-2014[J]. Scientific report,2015,5(1):16820.DOI:10.1038/s41558-018-0318-3 .
doi: 10.1038/s41558-018-0318-3
9 Chen X, Liang S, Cao Y. Satellite observed changes in the Northern Hemisphere snow cover phenology and the associated radiative forcing and feedback between 1982 and 2013[J]. Environmental Research Letters, 2016, 11(8): 084002.DOI:10.1088/1748-9326/11/8/084002 .
doi: 10.1088/1748-9326/11/8/084002
10 Wang Xiaoyue, Wang Siyuan, Yi Hang, et al. Snow phenology variability in the Qinghai-Tibetan Plateau and its response to climate change during 2002-2012[J]. Journal of Geo-information Science,2016,18(11):1573-1579.
10 汪箫悦, 王思远, 尹航, 等. 2002-2012年青藏高原积雪物候变化及其对气候的响应[J]. 地球信息科学学报,2016,18(11):1573-1579.
11 Wang X, Wu C, Wang H, et al. No evidence of widespread decline of snow cover on the Tibetan Plateau over 2000–2015[J]. Scientific Reports, 2017, 7(1): 14645.DOI:10.1038/s41598-017-15208-9 .
doi: 10.1038/s41598-017-15208-9
12 Qiao Dejing, Wang Nianqin, Li Zhen, et al. Spatial-temporal changes of snow phenology in the Qinhai-Tibetan Plateau during the hydrological year of 1980-2009[J]. Climate Change Research, 2018,14(2):137-143.
12 乔德京, 王念秦, 李震, 等. 1980-2009水文年青藏高原积雪物候时空变化遥感分析[J]. 气候变化研究进展, 2018, 14(2): 137-143.
13 Tang Z, Wang X, Wang J,et al.Spatiotemporal variation of snow cover in Tianshan Mountains, Central Asia, based on cloud-free MODIS fractional snow cover product,2001-2015[J]. Remote Sensing,2017,9(10):1045. DOI:10.3390/re 9101045 .
doi: 10.3390/re 9101045
14 Yang T, Li Q, Ahmad S, et al. Changes in snow phenology from 1979 to 2016 over the Tianshan Mountains, Central Asia[J]. Remote Sensing,2019,11(5):499. DOI:10.3390/rs 11050499 .
doi: 10.3390/rs 11050499
15 Li Xuemei, Gao Pei, Li Qian, et al. Muti-paths impact from climate change on snow cover in Tianshan Mountainous Area of China[J]. Climate Change Research,2016,12(4):303-312.
15 李雪梅, 高培, 李倩, 等. 中国天山积雪对气候变化响应的多通径分析[J].气候变化研究进展,2016,12(4):303-312.
16 Qin Yan, Ding Jianli, Zhao Qiudong, et al. Spatial-temporal variation of snow cover in the Tianshan Mountains from 2001 to 2015, and its relation to temperature and precipitation [J]. Journal of Glaciology and Geocryology, 2018, 40(2): 249-260.
16 秦艳, 丁建丽, 赵求东, 等. 2001-2015年天山山区积雪时空变化及其与气温和降水的关系[J]. 冰川冻土, 2018, 40(2): 249-260.
17 Ren Rui, Li Xuemei, Li lanhai, et al. Discrimination of driving factors of precipitation forms in Tianshan Mountains area of China[J] Journal of Arid Land Resources and Environment, 2020, 34(3): 112-117.
17 任瑞, 李雪梅, 李兰海, 等. 中国天山山区降水形态转变的驱动因子辨析[J]. 干旱区资源与环境, 2020, 34(3): 112-117.
18 Chen Y, Li W, Deng H, et al. Changes in Central Asia's water tower: Past, present and future[J]. Scientific Reports, 2016,6(1):35458.DOI:10.1038srep35458 .
doi: 10.1038srep35458
19 Zhao Wenyu, Liu Hailong, Wang Hui, et al. A study of spatial distribution of snow cover days in the Tianshan Mountains based on MODIS snow products[J]. Journal of Glaciology and Geocryology,2016,38(6):1510-1517.
19 赵文宇,刘海隆, 王辉,等. 基于MODIS积雪产品的天山年积雪日数空间分布特征研究[J]. 冰川冻土,2016,38(6):1510-1517.
20 Qiu Yubao, Guo Huadong, Chu Duo, et al. MODIS daily cloud-free snow cover product over the Tibetan Plateau[EB/OL]. V2. 2016. 2016-03-03. DOI:10.11922/sciencedb.55; http: ∥www.doi.org/10.11922/sciencedb.55.邱玉宝,
doi: 10.11922/sciencedb.55; http:
20 郭华东, 除多, 等. 青藏高原MODIS逐日无云积雪面积数据集[EB/OL]. V2. 2016. 2016-03-03. DOI:10.11922/sciencedb.55; http:
doi: 10.11922/sciencedb.55; http:
21 Qiu Yubao, Guo Huadong, Chu Duo, et al. MODIS daily cloud-free snow cover product over the Tibetan Plateau[EB/OL]. China Scientific Data, 2016(1): 7-17.
21 邱玉宝, 郭华东, 除多, 等. 青藏高原MODIS逐日无云积雪面积数据集(2002-2015年)[EB/OL]. 中国科学数据(中英文网络版), 2016(1): 7-17.
22 Peng Shouzhang. (2019). 1-km monthly mean temperature dataset for china(1901-2017)[EB/OL]. National Tibetan Plateau Data Center, DOI: 10.11888/Meteoro.tpdc.270961. CSTR: 18406.11.Meteoro.tpdc.27096.彭守璋 (2019). 中国1km分辨率逐月平均气温数据集(1901-2017)[EB/OL]. 国家青藏高原科学数据中心, DOI: 10.11888/Meteoro.tpdc.270961. CSTR: 18406.11.Meteoro.tpdc.270961 .
doi: 10.11888/Meteoro.tpdc.270961. CSTR: 18406.11.Meteoro.tpdc.270961
23 Peng S Z, Gang C, Cao Y, et al. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100[J]. International Journal of Climatology A Journal of the Royal Meteorological Society, 2018. 38(5): 2250-2264.
24 Peng S Z, Ding Y X, Liu W, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 2019, 11(4): 1931-1946.
25 Peng S Z, Ding Y X, Wen Z, et al. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100[J]. Agricultural and Forest Meteorology, 2017, 233(Complete): 183-194.
26 Ding Y X, Peng S Z. Spatiotemporal trends and attribution of drought across China from 1901-2100[J]. Sustainability, 2020, 12(2): 477. DOI:10.3390/su12020477 .
doi: 10.3390/su12020477
27 Peng Shouzhang. (2020). 1-km monthly precipitation dataset for China (1901-2017)[EB/OL]. National Tibetan Plateau Data Center, DOI: 10.5281/zenodo.3185722.
doi: 10.5281/zenodo.3185722
27 彭守璋. (2020). 中国1km分辨率逐月降水量数据集(1901-2017)[EB/OL]. 国家青藏高原科学数据中心, DOI: 10.5281/zenodo.3185722 .
doi: 10.5281/zenodo.3185722
28 Wang X, Xie H. New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua[J]. Journal of Hydrology, 2009, 371(1-4): 192-200.
29 Li Peiji, Mi Desheng. Distribution of snow cover in China[J]. Journal of Glaciology and Geocryology,1983,5(4):9-18.
29 李培基,米德生.中国积雪的分布[J].冰川冻土,1983,5(4):9-18.
30 Hüsler F, Jonas T, Riffler, et al. A satellite-based snow cover climatology (1985-2011) for the European Alps derived from AVHRR data[J]. The Cryosphere,2014,8:73-90.DOI:10.5194/tc-8-73-2014 .
doi: 10.5194/tc-8-73-2014
31 Peng S S, Piao S L, Ciais P, et al. Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades[J]. Environmental Research Letters, 2013, 8(014008): 1-8.DOI:10.1088/1748-9326/8/1/014008 .
doi: 10.1088/1748-9326/8/1/014008
32 Deng Haijun, Chen Yaning. The glacier and snow variations and their impact on water resources in mountain regions:A case study in Tianshan Mountains of Central Asia[J] Acta Geographica Sinica, 2018, 73(7): 1309-1323.
32 邓海军, 陈亚宁. 中亚天山山区冰雪变化及其对区域水资源的影响[J]. 地理学报, 2018, 73(7): 1309-1323.
33 Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact climate change on water resources in the Tianshan Mountains, Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 18-26.
33 陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
34 Chen Y N, Li W D, Deng H J, et al. Changes in Central Asia's water tower: Past, present and future[J]. Scientific Reports, 2016, 6: 35458.DOI:10.1038srep35458 .
doi: 10.1038srep35458
35 Li Y P, Chen Y N, Li Z. Climate and topographic controls on snow phenology dynamics in the Tienshan Mountains, Central Asia[J]. Atmospheric Research, 2019, 236:104813.DOI:10.1016/j.atmosres.2019.104813 .
doi: 10.1016/j.atmosres.2019.104813
36 Chen X N, Long D, Hong Y, et al. Climatology of snow phenology over the Tibetan Plateau for the period 2001-2014 using multisource data[J]. International Journal of Climatology, 2018, 38(6): 2718-2729.
37 Chen X, Liang S, Cao Y, et al. Distribution, attribution, and radiative forcing of snow cover changes over China from 1982 to 2013[J]. Climatic Change, 2016, 137(3-4): 363-377.
[1] 赵琴,郝晓华,和栋材,王建,李弘毅,王旭峰. 1980~2019年北疆积雪时空变化与气候和植被的关系[J]. 遥感技术与应用, 2021, 36(6): 1247-1258.
[2] 胡鹏飞, 李净, 张彦丽. 黄土高原水储量的时空变化及影响因素[J]. 遥感技术与应用, 2019, 34(1): 176-186.
[3] 尹思阳, 吴文瑾, 李新武. 基于遥感和气象数据的东南亚森林动态变化分析[J]. 遥感技术与应用, 2019, 34(1): 166-175.
[4] 孟梦,牛铮. 近30 a内蒙古NDVI演变特征及其对气候的响应[J]. 遥感技术与应用, 2018, 33(4): 676-685.
[5] 陈思宇,巩垠熙,梁天刚. 星载激光雷达在青藏高原湖泊变迁中的应用研究[J]. 遥感技术与应用, 2018, 33(2): 351-359.
[6] 陈栋栋,赵军. 我国西北干旱区湖泊变化时空特征[J]. 遥感技术与应用, 2017, 32(6): 1114-1125.
[7] 何霄嘉,董利苹,曲建升,曾静静. 我国适应气候变化数据发展现状、需求和战略建议[J]. 遥感技术与应用, 2017, 32(3): 585-592.
[8] 肖林,车涛. 青藏高原积雪对气候反馈的初步研究[J]. 遥感技术与应用, 2015, 30(6): 1066-1075.
[9] 侯姗姗,雷莉萍,关贤华. 温室气体观测卫星GOSAT及产品[J]. 遥感技术与应用, 2013, 28(2): 269-275.
[10] 戴声佩, 张勃, 王海军, 郭玲霞, 王亚敏. 中国西北地区植被时空演变特征及其对气候变化的响应[J]. 遥感技术与应用, 2010, 25(1): 69-76.