Please wait a minute...
img

官方微信

遥感技术与应用  2010, Vol. 25 Issue (3): 328-333    DOI: 10.11873/j.issn.1004-0323.2010.3.328
研究与应用     
基于多时相TM和北京一号卫星影像的春播进度遥感监测 

齐 腊1,2,黄文江2,陈 玲1,王纪华2,王锦地1
1.北京师范大学地理学与遥感科学学院,北京 100875;
2.国家农业信息化工程技术研究中心,北京 100097
Monitoring the Spring Sowing Progress in Beijing with Multi-temporal Landsat TM and “Beijing-1”Micro-satellite Images
QI La1,2,HUANG Wen-jiang2,CHEN Ling1,WANG Ji-hua2,WANG Jin-di1
1.School of Geography and Remote Sensing,Beijing Normal University,Beijing 100875,China;
2.National Engineering Research Center for Information Technology in Agriculture,Beijing 100097,China
 全文: PDF(1922 KB)  
摘要:

基于作物生长的物候规律,利用2007年4月26日、2007年5月28日Landsat TM影像和2007年6月28日北京一号卫星影像进行北京地区春播进度遥感监测。首先,分析了地物类型之间的光谱可分性距离;其次,采用逐步鉴别分析方法,并将掩膜技术和决策树分类方法相结合,监测北京2007年5月28日和6月28日的春播作物种植面积;最后,基于地面调查点对分类结果进行精度评价。结果表明5月28日总体精度为84.5%,6月28日总体精度为88.0%;逐步鉴别分析方法有利于寻找作物分类的光谱差异,建立多时相分类规则,简化了多时相多作物遥感分类流程并提高了分类精度。

关键词: 多时相归一化均值距离逐步鉴别分析春播进度    
Abstract:

The normalized distance between the means was firstly calculated,the phenological spectral differences of multi-crop were investigated by the stepwise discriminations analysis method,the decision tree method and the mask technology were employed to monitor the planting areas of spring-sown crops on 28th May and 28th June,using remote sensing images acquired on 26th April,28th May and 28th June 2007,then the areas in counties were computed with the administrate boundaries,last,the accuracy validations were made based on ground truth interpreting points.The results showed that the classification accuracy on 28th May is 84.5% and that on 28th June is 88.0%.The stepwise discriminations analysis was testified to be more suitable to built classification rule and improve the multi\|crop classification accuracy based on multi\|temporal images.

Key words: Multi-temporal    The normalized distance between the means    Stepwise discriminations analysis    Spring sown progress
出版日期: 2010-10-20
基金资助:

国家863项目(2006AA120101、2006AA12Z138、2006AA210108),国家973项目(2007CB714401)资助。

通讯作者: 黄文江 E-mail:yellowstar0618@163.com   
作者简介: 齐腊(1982-),女,博士研究生,现从事地物分类与农业遥感应用研究。E-mail:qilaros@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
??腊
黄文江
??玲
王纪华
王锦地

引用本文:

齐 腊, 黄文江, 陈 玲, 王纪华, 王锦地. 基于多时相TM和北京一号卫星影像的春播进度遥感监测 [J]. 遥感技术与应用, 2010, 25(3): 328-333.

QI La, HUANG Wen-jiang, CHEN Ling, WANG Ji-hua, WANG Jin-di. Monitoring the Spring Sowing Progress in Beijing with Multi-temporal Landsat TM and “Beijing-1”Micro-satellite Images. Remote Sensing Technology and Application, 2010, 25(3): 328-333.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2010.3.328        http://www.rsta.ac.cn/CN/Y2010/V25/I3/328

[1]Driese K L,Reiners W A,Lovett G M,et al.A Vegetation Map for Catskill Park,NY,Derived from Multi-temporal Landsat Imagery and GIS Data[J].Northeastern Naturalist,2004,11(4):421-442.
[2]Uchida S.Discrimination of Agricultural Land Use Using Multi-temporal NDVI Data[C]//The 22nd Asian Conference on Remote Sensing,2001,2:813-818.
[3]Gorham B.Mapping Multi-temporal Agricultural Land Use in the Mississippi Alluvial Valley of Arkansas[C]//Spatial Technologies in Agriculture and Natural Resources.SRIEG-10 Annual Conference,1998.
[4]Gregory P A,Matthew O J,Roberta E M,et al.Remote Sensing of Native and Invasive Species in Hawaiian Forests[J].Remote Sensing of Environment,2008,112(5):1912-1926.
[5]Shi Z,Cheng J,Huang M,et al.Assessing Reclamation Levels of Coastal Saline Lands with Integrated Stepwise Discriminant Analysis and Laboratory Hyperspectral Data[J].Pedosphere,2006,16(2):154-160.
[6]Agrawal S,Joshi P K,Yogita S,et al.SPOT Vegetation Multi-temporal Data for Classifying Vegetation in South Central Asia[J].Current Science,2003,84(11):1440-1448.
[7]Turner M D,Congalton R G.Classification of Multi-temporal SPOT-XS Satellite Data for Mapping Rice Fields on a West African Floodplain[J].International Journal of Remote Sensing,1998,19(1):21-41.
[8]Baret F,Guyot G,Major D J.TSAVI:A Vegetation Index Which Minimizes Soil Erightness Effects on LAI and APAR Estimation[C]//IGARSS89,1989,(3):1355-1358.
[9]Du Zitao,Zhan Yulin,Wang Changyao.Study on Vegetation-cover Changes Based on NDVI Serial Images[J].Remote Sensing Technology and Application,2008,23(2):47-50.[杜子涛,占玉林,王长耀.基于NDVI序列影像的植被覆盖变化研究[J].遥感技术与应用,2008,23(2):47-50.]
[10]Qi La,Zhao Chunjiang,Li Cunjun,et al.Accuracy of Winter Wheat Identification Based on Multi-temporal CBERS-02 Images[J].Chinese Journal of Applied Ecology,2008,19(10):2201-2208.[齐腊,赵春江,李存军,等.基于多时相中巴资源卫星影像的冬小麦分类精度[J].应用生态学报,2008,19(10):2201-2208.]
[11]Jiang Dong,Wang Naibin,Yang Xiaohuan,et al.Principles of the Interaction between NDVI Profile and the Growing Situation of Crops[J].Acta Ecologica Sinica,2002,22(2):47-252.[江东,王乃斌,杨小唤,等.NDVI曲线在农作物长势的时序互动规律[J].生态学报,2002,22(2):47-252.]
[12]Tong Qingxi,Zhang Bing,Zheng Lanfen.Hyperspectral Remote Sensing [M].Beijing:Higher Education Press,2006.[童庆禧,张兵,郑兰芬.高光谱遥感--原理、技术与应用[M].北京:高等教育出版社,2006.]

 

[1] 张祥,陈报章,赵慧,汪磊. 基于时序Sentinel-1A数据的农田土壤水分变化检测分析[J]. 遥感技术与应用, 2017, 32(2): 338-345.
[2] 雷小雨,卓莉,叶涛,陶海燕,王芳. 基于时差特征与随机森林的水稻种植面积提取[J]. 遥感技术与应用, 2016, 31(6): 1140-1149.
[3] 雷光斌,李爱农,谭剑波,张正健,边金虎,靳华安,赵伟,曹小敏. 基于多源多时相遥感影像的山地森林分类决策树模型研究[J]. 遥感技术与应用, 2016, 31(1): 31-41.
[4] 张焕雪,曹新,李强子,张淼,郑新奇. 基于多时相环境星NDVI时间序列的农作物分类研究[J]. 遥感技术与应用, 2015, 30(2): 304-311.
[5] 白黎娜, 王琫瑜, 田 昕, 卢 颖, 杨永恬. 基于多时相ENVISat ASAR数据的冬小麦识别方法—以北京通州试验区为例[J]. 遥感技术与应用, 2010, 25(4): 458-463.
[6] 马丽,徐新刚,刘良云,黄文江,贾建华,程一沛. 基于多时相NDVI及特征波段的作物分类研究[J]. 遥感技术与应用, 2008, 23(5): 520-524.
[7] 竞霞,王锦地,王纪华,黄文江,刘良云. 基于分区和多时相遥感数据的山区植被分类研究[J]. 遥感技术与应用, 2008, 23(4): 394-397.
[8] 齐腊,刘良云,赵春江,王纪华,王锦地. 基于遥感影像时间序列的冬小麦种植监测最佳时相选择研究[J]. 遥感技术与应用, 2008, 23(2): 154-160.
[9] 付琨, 尤红建, 胡岩峰. 多时相星载SAR图像精配准技术研究[J]. 遥感技术与应用, 2007, 22(5): 637-641.
[10] 廖静娟, 郭华东, 邵芸. 多时相SAR干涉测量数据探测地表特征变化[J]. 遥感技术与应用, 2005, 20(6): 543-546.
[11] 钟家强, 王润生. 一种稳健的多时相遥感图像相对辐射校正方法[J]. 遥感技术与应用, 2005, 20(6): 611-615.
[12] 竞 霞, 刘良云, 张 超, 王纪华, 贾建华, 李国靖. 利用多时相NDVI 监测京郊冬小麦种植信息[J]. 遥感技术与应用, 2005, 20(2): 238-242.
[13] 金亚秋. 极化散射与SAR 遥感信息获取[J]. 遥感技术与应用, 2005, 20(1): 6-10.
[14] 张荣群,张 玮,袁志龙. 多时相ERS-2 SAR图像在作物分类中的预处理方法研究[J]. 遥感技术与应用, 2000, 15(1): 60-62.