Please wait a minute...
img

官方微信

遥感技术与应用  2013, Vol. 28 Issue (4): 576-581    DOI: 10.11873/j.issn.1004-0323.2013.4.576
遥感应用     
基于决策树分层分类法的粉煤灰堆场信息提取研究
董金发1,2,刘庆生1,刘高焕1,申文明3,王鹏1,张朝忙4
(1.中国科学院地理科学与资源研究所,北京 100101;2.中国科学院大学,北京 100049;
3.环境保护部卫星环境应用中心,北京 100094;4.华中农业大学,湖北 武汉 430070)
Research on Using the Decision Tree Hierarchical Classification Method to Extract Fly Ash Information
Dong Jinfa1,2,Liu Qingsheng1,Liu Gaohuan1,Shen Wenming3,Wang Peng1,Zhang Chaomang4
(1.Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,
Beijing 100101,China;2.University of Chinese Academy of Sciences,Beijing 100049,China;
3.Satellite Environment Center,Ministry of Environmental Protection,Beijing 100094,China;
4.Huazhong Agricultural University,Wuhan 430070,China)
 全文: PDF(2337 KB)  
摘要:

粉煤灰污染环境,危害人类健康。应用遥感方法快速、实时、准确地识别粉煤灰堆场信息,对保护环境和人类健康具有重要意义。通过分析包头市辖区内典型地物的光谱信息,基于Landsat 5 TM影像数据,采用决策树分层分类法对研究区内的粉煤灰堆场进行提取实验。首先,分析研究区内典型地物的光谱特征,对不同地物之间的关系进行比较。其次,建立决策树,利用土壤调节植被指数(SAVI)、改进归一化差异水体指数(MNDWI)、归一化建筑指数(NDBI)以及光谱阈值法对图像进行了分类。最后利用形状特征和空间位置特征等对分类图像进行后处理,分类精度达到70.7%。实验结果表明:该方法适合粉煤灰堆场信息的自动提取,结合目视解译能够达到较高的识别精度。

关键词: 遥感决策树分层分类粉煤灰    
Abstract:

Fly ash not only pollutes environment,but also endangers human health.It is of great significance to the protection of the environment and human health that distinguish fly ash rapidly,real-timely,accurately based on remote sensing.The paper chooses Landsat 5 TM image as the source data and analysed the spectral information of the typical surface features in Baotou City. Then the study adopts the decision tree classification to extract fly ash in the study area.Firstly,analyzed the spectral characteristics of the typical objects and compared the relationship between them in the study area.Secondly,classified the image respectively through established the decision tree,used Soil-adjusted Vegetation Index(SAVI),Modified Normalized Difference Water Index(MNDWI),Normalized Difference Built-up Index(NDBI) and Spectrum Threshold Method.Ultimately,conducted post-process for the result of classification by shape feature and space feature.The total classification accuracy was up to 70.7%.The experimental results show that the method is suitable for the automatic extraction of fly ash information,can achieve high accuracy combined with the visual interpretation.

Key words: Remote sensing    Decision tree hierarchical classification    Fly ash
收稿日期: 2012-05-08 出版日期: 2013-08-14
:  TP 751.1  
基金资助:

环保公益资助项目(201109043)。

通讯作者: 刘庆生(1971-),男,山西忻州人,副研究员,主要从事遥感图像处理和土壤与植被遥感方面的研究。Email:liuqs@lreis.ac.cn。    
作者简介: 董金发(1987-),男,河北唐山人,硕士研究生,主要从事GIS与RS应用研究。E-mail:dongjf@lreis.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
董金发
刘庆生
刘高焕
申文明
王鹏
张朝忙

引用本文:

董金发,刘庆生,刘高焕,申文明,王鹏,张朝忙. 基于决策树分层分类法的粉煤灰堆场信息提取研究[J]. 遥感技术与应用, 2013, 28(4): 576-581.

Dong Jinfa,Liu Qingsheng,Liu Gaohuan,Shen Wenming,Wang Peng,Zhang Chaomang. Research on Using the Decision Tree Hierarchical Classification Method to Extract Fly Ash Information. Remote Sensing Technology and Application, 2013, 28(4): 576-581.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2013.4.576        http://www.rsta.ac.cn/CN/Y2013/V28/I4/576

[1]Wang Ligang.Environmental Damage of Fly Ash and the Potential of Use[J].Energy and Environmental Protection,2000,(3):45-46.[王立刚.粉煤灰的环境危害与利用潜力[J].能源基地建设,2000,(3):45-46.]

[2]Jing Qingqing,Zhang Zhi,Wang Xu.Collecting Method of Coal Refuse Distribution Information based on ASTER Remote Sensing Images[J].Coal Science and Technology,2008,36(5):93-96.[荆青青,张志,王旭.基于ASTER遥感影像的煤矸石分布信息提取方法[J].煤炭科学技术,2008,36(5):93-96.]

[3]Hou Yan,Lu Wanxi,Zhang Shaobo.Particles Identification such as Fly Ash Using Various Image Edge Detection Algorithm[J].Coal Technology,2008,(6):77-79.[候艳,路万西,张少波.用不同图像边缘检测算法识别粉煤灰等颗粒物[J].煤炭技术,2008,(6):77-79.]

[4]Yang Bo,Yu Haiyong,Wu Keru.Application of Numeric Picture to Study of Fly Ash Particle Group Characteristics[J].Coal Ash China,2000,(6):7-11.[杨波,俞海勇,吴科如.数值图像分析在研究粉煤灰颗粒群特征中的应用[J].粉煤灰,2000,(6):7-11.]

[5]Feng Wen,Zhang Zhi,Wuyunqiqige,et al.Research on Using the Decision Tree Classification Method to Extract Coal Gangue Information[J].Journal of Natural Science of Heilongjiang University,2011,28(2):271-280.[冯稳,张志,乌云其其格,等.采用决策树分类方法进行煤矸石信息提取研究[J].黑龙江大学学报(自然科学版),2011,28(2):271-280.]

[6]Yang Qiang,Zhang Zhi.The Remote Sensing Extraction Method for the Mining Area and the Solid Waste in the Baokang Phosphorite Ore District,Hubei Province[J].Remote Sensing for Land and Resources,2009,(2):87-90.[杨强,张志.湖北省保康磷矿区开采面及固体废弃物遥感信息提取方法[J].国土资源遥感,2009,(2):87-90.][7]Cao Jianjun,Liu Yongjuan.Extraction Method of Municipal Solid Waste from RS Image[J].Environmental Sanitation Engineering,2008,(5):47-54.[曹建军,刘永娟.遥感图像中城市固体废物提取方法研究[J].环境卫生工程,2008,(5):47-54.]

[8]Liu Qingsheng,Liu Gaohuan.Using CBERS CCD Images to Monitor Dynamic Change of Jiaojiapo Waste Landfill Site[J].Environmental Sanitation Engineering,2010,18(5):17-19.[刘庆生,刘高焕.基于CBERS CCD图像的焦家坡垃圾填埋场动态变化监测[J].环境卫生工程,2010,18(5):17-19.]

[9]Hu Rongming,Wei Man,Yang Chengbin,et al.Taking SPOT5 Remote Sensing Data for Example to Compare Pixel-based on Object-oriented Classification[J].Remote Sensing Technology and Application,2012,27(3):366-371.[胡荣明,魏曼,杨成斌,等.以SPOT5遥感数据为例比较基于像素与面向对象的分类方法[J].遥感技术与应用,2012,27(3):366-371.]

[10]Japan Association of Remote Sensing,Liu Yongwei Trans.Illustrated Remote Sensing[M].Beijing:Surveying and Mapping Press,2011.[日本遥感研究会编,刘勇卫译.遥感精解[M].北京:测绘出版社,2011.]

[11]Zhao Yingshi.Principles and Methods of Analysis of Remote Sensing Applications[M].Beijing:Science Press,2003.[赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.]

[12]Liu Qingsheng.Decision Tree Classification of Landsat TM Images for Solid Waste Dumps Covered with Black Impervious Membrane[J].Environmental Sanitation Engineering,2010,18(1):9-11.[刘庆生.黑色防渗膜覆盖的固体废物堆放场TM图像决策树分类初探[J].环境卫生工程,2010,18(1):9-11.]

[13]Silvestri S,Omri M.A Method for the Remote Sensing Identification of Uncontrolled Landfills:Formulation and Validation[J].International Journal of Remote Sensing,2008,29(4):975-989.

[14]Yang Shuwen,Li Mingyong,Liu Tao,et al.A Method of Alluvial Fan Automatic Extraction from TM Image[J].Remote Sensing for Land and Resources,2011,89(2):65-69.[杨树文,李名勇,刘涛,等.一种利用TM图像自动提取洪积扇的方法[J].国土资源遥感,2011,89(2):65-69.]

[15]Fior F,Rosselli R,Silvestri S,et al.The Use of Remote Sensing and GIS to Map Illegal Dumps:A Project Sponsored by the Veneto Region[C]//Proceedings Sardinia 2005,Tenth International Waste Management and Landfill Symposium,S Margherita di Pula,Cagliari,Italy,2005.

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[5] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[6] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[7] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[8] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[9] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[10] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[11] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[12] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.
[13] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[14] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.
[15] 郭宇柏,卓莉,陶海燕,曹晶晶,王芳. 基于空谱初始化的非负矩阵光谱混合像元盲分解[J]. 遥感技术与应用, 2018, 33(2): 216-226.