Please wait a minute...
img

官方微信

遥感技术与应用  2014, Vol. 29 Issue (5): 853-860    DOI: 10.11873/j.issn.1004-0323.2014.5.0853
遥感应用     
基于分形的遥感蚀变异常提取在毛坪铅锌矿中的应用
余敏1,2,温兴平1,2,徐俊龙1,2,晁江琴1,杨炀1,王军1,2,易邦进3
(1.昆明理工大学国土资源工程学院地球科学系,云南 昆明650093;
2.云南省矿产资源预测评价工程实验室,云南 昆明650093;
3.云南省地质科学研究所,云南 昆明650051)
Application of Extraction of Remote Sensing Alteration Anomalies based on Fractal Theory in Maoping Lead\|Zinc Deposit
Yu Min1,2,Wen Xingping1,2,Xu Junlong1,2,Chao Jiangqin1,Yang Yang1,Wang Jun1,2,Yi Bangjin3
(1.Department of Earth Sciences,Faculty of Land Resource Engineering,Kunming University of Science and Technology,Kunming 650093,China;
2.Mineral Resources Prediction and Evaluation Engineering Laboratory of Yunnan Province,Kunming 650093,China;
3.Yunnan Institute of Geological Science,Kunming 650051,China)
 全文: PDF(8395 KB)  
摘要:

在地球科学领域中,自相似性非常普遍,围岩蚀变作为一种地学特征并以遥感异常反映在影像上,其像元亮度—面积模式符合一定的分形理论。利用分形理论的求和法进行遥感蚀变异常的提取和分级可以弥补门限法和灰度直方图目视方法确定突变点的不足,再次利用分形的盒维数方法可得到研究区遥感蚀变异常的分形特征。以云南昭通毛坪铅锌矿ETM+遥感影像数据为信息源,采用主成分分析法(PCA)计算出反映矿区遥感蚀变异常的主分量,再对异常主分量进行像元灰度值和像元个数的统计并采用分形方法对蚀变异常信息进行分析和蚀变异常级别的划分,最后利用分形的盒维数法得到毛坪铅锌矿遥感蚀变异常信息的分形特征并与传统门限化方法进行了对比研究。研究表明区内遥感蚀变异常信息具有统计上的分形特征,分形方法确定异常限要比传统的门限化方法选取蚀变阈值更为准确;分维值与异常级别存在一定的正相关关系;分维高值区与蚀变信息密集区相一致。
 

关键词: 遥感蚀变异常分形毛坪铅锌矿    
Abstract:

In the field of earth science,Self\|similarity is very common.The wall rock alteration is reflected on the image as a geo\|science character,whose pixel brightness and area model conform to the fractal theory.Using the summation method of fractal theory for the extraction of remote sensing alteration anomalies and classification can make up for the threshold method and gray level histogram visual method to determine the mutation point.Finally obtaining the fractal features of remote sensing alteration anomaly in the study area by fractal box dimension method.This paper taks ETM+ remote sensing image data of Maoping lead\|zinc deposit as the information source,which is used for Principal Component Analysis (PCA) reflect the mining area of remote sensing alteration anomaly of principal components,and statistics the principal component of pixel grey value and the number of pixels.Then fractal method is used to analyze alteration anomaly information and divide the alteration abnormal levels.Finally using fractal box dimension method get Maoping lead\|zinc deposit fractal features of remote sensing alteration anomaly information and compared with the traditional threshold method.The study show that the remote sensing alteration information of the study area has characteristics of statistical fractal and the fractal method to determine abnormal limit is more accurate than the traditional methods of threshold selection alteration threshold;There is a positive correlation between fractal dimension values and the abnormal level;Fractal dimension of high value areas and the alteration information concentration areas is consistent.
 

Key words: Remote sensing    Alteration anomalies    Fractal    Maoping lead-Zinc deposit
收稿日期: 2013-05-08 出版日期: 2014-11-10
:  P 614  
基金资助:

国家自然科学基金联合基金(U1133602)、国家自然科学基金项目(41101343)和昆明理工大学成矿动力学与隐伏矿预测创新团队(2008)联合资助。

通讯作者: 温兴平(1970-),男,山西兴县人,教授,主要从事地球化学与遥感地质方面的研究。Email:wfxyp2008@gmail.com。    
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
余敏
温兴平
徐俊龙
晁江琴
杨炀
王军
易邦进

引用本文:

余敏,温兴平,徐俊龙,晁江琴,杨炀,王军,易邦进. 基于分形的遥感蚀变异常提取在毛坪铅锌矿中的应用[J]. 遥感技术与应用, 2014, 29(5): 853-860.

Yu Min,Wen Xingping,Xu Junlong,Chao Jiangqin,Yang Yang,Wang Jun,Yi Bangjin. Application of Extraction of Remote Sensing Alteration Anomalies based on Fractal Theory in Maoping Lead\|Zinc Deposit. Remote Sensing Technology and Application, 2014, 29(5): 853-860.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2014.5.0853        http://www.rsta.ac.cn/CN/Y2014/V29/I5/853

[1]Mandelbrot B.How Long is the Coast of Britain? Statistical Self-similarity and Fractional Dimension[J].Science,1967,(156):636-638.

[2]Mandelbrot B.Fractal:Form,Chance and Dimension[M].San Francisco:W H Freeman,1977.

[3]Barnsley M F.Fractals Everywhere[M].Boston:Academic Press Professional,1993.

[4]Thompson A H,Katz A J,Krohn C E.The Microgeo-metry and Transport Properties of Sedimentary Rock[J].Advances in Physics,1987,36(5):625-629.

[5]Turcotte D L.A Fractal Model Crustal Deformation[J].Tectonophys,1986,132:261-269.

[6]Turcotte D L.Fractals and Chaos in Geology and Geophysics[M].Britain:Cambridge University Press,1992.

[7]Agterberg F P.Multifractal Simulation of Geochemical Map Patterns[M].New York:Kluwer Academic Publishers,2001.

[8]Yu Chongwen.Complexity of Geosystem:Basic Issues of Geological Science(I)[J].Earth Science,2002,27(5):509-519.[於崇文.地质系统的复杂性-地质科学的基本问题(I)[J].地球科学,2002,27(5):509-519.]

[9]Yu Chongwen.Fractal Chaos of Ore-forming Dynamical Systems at the Edge of Chaos——A New Metallogeny and Methodology (First Half)[J].Earth ScienceFrontiers,2001,(3):9-28.[於崇文.成矿动力系统在混沌边缘分形生长——一种新的成矿理论与方法论(上)[J].地学前缘,2001,(3):9-28.]

[10]Yu Chongwen.Fractal Chaos of Ore-forming Dynamical Systems at the Edge of Chaos——A New Metallogeny and Methodology (Second Half)[J].Earth ScienceFrontiers,2001,(4):47l-489.[於崇文.成矿动力系统在混沌边缘分形生长——一种新的成矿理论与方法论(下)[J].地学前缘,2001,(4):47l-489.]

[11]Zhao Pengda.Geologic Anomaly Theory and Mineral Resource Prognosis:Modern Theories and Methods of Evaluation of Mineral Resources[M].Beijing:Geological Publishing House,1998.[赵鹏大.地质异常理论与矿床预测:现代矿产资源评价理论与方法[M].北京:地质出版社,1998.]

[12]Cheng Qiuming.Singular Mineralization Processes and Mineral Resources Quantitative Prediction:New Theories and Methods[J].Earth ScienceFrontiers,2007,(5):42-53.[成秋明.成矿过程奇异性与矿产预测定量化的新理论与新方法[J].地学前缘,2007,(5):42-53.]

[13]Cheng Qiuming.Quantifying the Generalized Self-similarity of Spatial Patterns for Mineral Resource Assessment[J].Earth Science,2004,29(6):733-744.[成秋明.空间模式的广义自相似性分析与矿产资源评价[J].地球科学,2004,29(6):733-744.]

[14]Zhou Y Z,Chown E H,Tu G Z.Geochemical Migration and Resultant Distribution Patterns of Impurity Trace Elements in Source Rocks[J].MathematicalGeology,1994,(4):419-435.

[15]Wang Qian,Chen Jianping.Extraction and Grading of Remote Sensing Alteration Anomaly based on the Fractal Theory[J].Geological Bulletin ofChina,2009,28(2/3):285-288.[王倩,陈建平.基于分形理论的遥感蚀变异常提取和分级[J].地质通报,2009,28(2/3):285-288.]

[16]Zhang Jiandong,Peng Shenglin,Yang Bin,et al.Application of Fractal the Quantitative Analysis of Remote Sensing Information from the Gejiu SnDeposit,Yunnan Province[J].Contributions to Geology and Mineral Resources Research,2008,(2):65-68.[张建东,彭省临,杨斌,等.分形理论在云南个旧锡矿遥感信息定量化分析中的应用[J].地质找矿论丛,2008,(2):65-68.]

[17]Liang Yuqi,Wang Gongwen,Zhu Yanyan,et al.Alteration from ETM+ Data Rating based on Fractal Technologies[J].Remote Sensing Technology andApplication,2011,26(4):509-511.[粱钰琦,王功文,朱彦彦,等.分形方法在遥感蚀变信息提取中的应用研究[J].遥感技术与应用,2011,26(4):509-511.]

[18]Diao Hai,Zhang Da,Zhao Bo.Extraction of Remote Sensing Gray Anomalies based on the Fractal Model:The Example of Extracting Iron Alteration Anomaliesfrom the Duobaoshan District,Heilongjiang Province[J].Geology and Exploration,2011,47(5):903-908.[刁海,张达,赵博.基于分形模型的遥感灰度异常提取研究:以黑龙江多宝山地区铁染异常提取为例[J].地质与勘探,2011,47(5):903-908.]

[19]Zhao Difei,Shi Qingmin,Zhang Xisong,et al.Remote Sensing Alteration Extraction and Metallogenic Prediction based on Fractal:Yemaquan Area inQinghai Taken as Example[J].China Mining Magazine,2012,21(9):77-78.[赵迪斐,师庆民,张喜松,等.基于分形的遥感蚀变提取及成矿预测:以青海野马泉地区为例[J].中国矿业,2012,21(9):77-78.]

[20]Hu Bin,Han Runsheng.The Ore-controlling Structure and Ore-prospecting Direction of Maoping Lead-Zinc Deposit[J].Yunnan Geology,2003,22(3):295-303.[胡彬,韩润生.毛坪铅锌矿构造控矿及找矿方向[J].云南地质,2003,22(3):295-303.]

[21]Han Runsheng,Chen Jin,Huang Zhilong,et al.Dynamics of Tectonic Ore-forming Processes and Localization Prognosis of Concealed Ore Bodies——AsExemplified by the Huize Super-Large Zn-Pb(Ag-Ge) District,Yunnan[M].Beijing:Science Press,2006.[韩润生,陈进,黄智龙,等.构造成矿动力学及隐伏矿定位预测——以云南昭通毛坪铅锌(银、锗)矿床为例[M].北京:科学出版社,2006.]

[22]Wang Yali,Cui Yinliang.The Remote Sensing Geological Characteristics and Metallogenesis Prognosis of Maoping Pb-Zn Deposit in NE Yunnan[J].YunnanGeology,2010,29(4):438-443.[王雅丽,崔银亮.滇东北及毛坪铅锌矿遥感地质与成矿预测[J].云南地质,2010,29(4):438-443.]

[23]Liu Hechang,Lin Kaida.Regularity Research of Ag.Zn.Pb Ore Deposits North-east Yunnan Province[M].Kunming:Publishing House of Yunnan University,1999.[柳贺昌,林开达.滇东北铅锌银矿床规律研究[M].昆明:云南大学出版社,1999.]

[24]Cui Yinliang,Zhang Yunfeng,Guo Xin,et al.The Remote Sensing Geological Characteristics and Metallogenesis Prognosis in NE Yunnan Province[M].Beijing:Geological Publishing House,2011.[崔银亮,张云峰,郭欣,等.滇东北铅锌银矿床遥感地质与成矿预测[M].北京:地质出版社,2011.]

[25]Zhao Zhifang.Study on Remote Sensing Anomalies Related with Mineralization:A Case Study on Northwestern Yunnan Multi-copper Mineralization Belt[D].Beijing:China University of Geosciences,2008.[赵志芳.矿化遥感异常信息研究[D].北京:中国地质大学,2008.]

[26]Xu Hanqiu.A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI)[J].Journal of RemoteSensing,2005,9(5):589-595.[徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595.]

[27]Liu Wenyuan,Xie Yanan,Wan Zhilong,et al.Analysis on Urban Island Effect of Different Dynamics of Urban Surface Biophysical Descriptors in ShanghaiCity[J].Remote Sensing Technology and Application,2012,27(5):797-803.[刘文渊,谢亚楠,万智龙,等.不同地表参数变化的上海市热岛效应时空分析[J].遥感技术与应用2012,27(5):797-803.]

[28]Shen Wei.Fractal Chaos and Mineral Prediction[M].Beijing:Geological Publishing House,2002.[申维.分形混沌与矿产预测[M].北京:地质出版社,2002.]

[29]Cheng Qiuming,Zhang Shengyuan,Zuo Renguang,et al.Progress of Multifractal Filtering Techniques and Their Applications in Geochemical InformationExtraction[J].Earth Science Frontiers,2009,16(2):185-198.[成秋明,张生元,左仁广,等.多重分形滤波方法和地球化学信息提取技术研究与进展[J].地学前缘,2009,16(2):185-198.]

[30]Zhang Yujun,Zeng Zhaoming,Chen Wei.The Methods for Extraction of Alteration Anomalies from the ETM+(TM) Data and Their Application:Method Selectionsand Technological Flow Charts[J].Remote Sensing for Land & Resources,2003,(2):45-49.[张玉君,曾朝铭,陈薇.ETM+(TM) 蚀变遥感异常提取方法研究与应用-方法选择和技术流程[J].国土资源遥感,2003,(2):45-49.]

[31]Zhang Yujun,Yang Jianmin,Chen Wei.A Study of the Method for Extraction of Alteration Anomalies from the ETM+(TM) Data and Its Application:GeologicBasis and Spectral Precondition[J].Remote Sensing for Land & Resources,2002,(4):31-36.[张玉君,杨建民,陈薇.ETM+(TM) 蚀变遥感异常提取方法研究与应用-地质依据和波谱前提[J].国土资源遥感,2002,(4):31-36.]

[32]Chen Ganliang,Yang Bailin.Fractal Dimension-A New Variable for Prediction of Ore Deposit Using Linement[J].Geology and Exploration,1996,32(2):37-39.[陈赶良,杨柏林.分维-利用遥感线性体预测矿床的新参量[J].地质与勘探,1996,32(2):37-39.]

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[3] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[4] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[5] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[6] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[7] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[8] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[9] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[10] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[11] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.
[12] 任浙豪,周坚华. 增大特征空间复杂度的方法——以城镇下垫面遥感分类为[J]. 遥感技术与应用, 2018, 33(3): 408-417.
[13] 王宝刚,晋锐,赵泽斌,亢健. 被动微波遥感在地表冻融监测中的应用研究进展[J]. 遥感技术与应用, 2018, 33(2): 193-201.
[14] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.
[15] 郭宇柏,卓莉,陶海燕,曹晶晶,王芳. 基于空谱初始化的非负矩阵光谱混合像元盲分解[J]. 遥感技术与应用, 2018, 33(2): 216-226.