Please wait a minute...
img

官方微信

遥感技术与应用  2014, Vol. 29 Issue (6): 976-983    DOI: 10.11873/j.issn.1004-0323.2014.6.0976
模型与反演     
基于能量平衡原理的FPAR遥感反演研究
张健1,2,刘良云1,焦全军1,彭代亮1
(1.中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094;
2.西安科技大学测绘工程与技术学院,陕西 西安710054)
Retrieval of FPAR based on Energy Conservation Principle Using Remote Sensing
Zhang Jian1,2,Liu Liangyun1,Jiao Quanjun1,Peng Dailiang1
(1.Key Laboratory of Digital Earth Science,Institute of Remote Sensing and Digital Earth,
Chinese Academy of Sciences,Beijing 100094,China;
2.Xi an University of Science and Technology,Department of
Survey Engineering,Shaanxi,Xi an 710054,China)
 全文: PDF(1219 KB)  
摘要:

光合有效辐射吸收系数(FPAR)是描述植被结构以及冠层—大气物质与能量交换过程的基本生理变量。从能量守恒的原理出发,结合非线性混合像元模型,分析了太阳入射能量中的植被冠层反射、土壤吸收分量的光谱反演方法,建立了简化的FPAR遥感反演模型(FPEB)。分别应用2011和2013年西藏自冶区那曲实验数据\,2011年西藏自冶区当雄实验数据和2013年内蒙古自冶区海拉尔的实验数据,对建立的FPAR遥感反演模型进行了验证,并将FPEB模型反演结果与传统的植被指数统计模型反演结果进行了对比分析,结果表明:FPEB模型的FPAR反演精度优于NDVI统计模型,且与其他基于能量平衡原理提出的反演FPAR的模型相比具有输入参数少,模型简单的优势,在空间区域和时间上具有很好的普适性。

关键词: FPARPAR能量平衡植被指数非线性混合像元模型    
Abstract:

The Fraction of Absorbed Photosynthetically Active Radiation (FPAR) is a physiological parameter described the vegetation structure and the exchange of carbon and energy between vegetation canopy and atmosphere.In this paper,a method for retrieving vegetation canopy reflected and soil absorbed radiation components of incident PAR was analyzed by non\|linear mixing pixel model,and a simplified semi\|empirical model of estimate FPAR base on Principle of Energy Balance (FPEB) was presented firstly.Then,the FPEB model were examined using four independent field at Nagqu district,Tibet Autonomous Region in 2011 and 2013,Dangxiong county,Tibet Autonomous Region in 2011 and Hailar district,Inner Mongolia Autonomous Region in 2013.And the FPEB model was also compared with the traditional Normalized Difference Vegetation Index (NDVI) model.The results showed that the accuracy of FPEB model was better than NDVI\|based model,and that the FPEB model was universal and valid for different regions or vegetation types.

Key words: FPAR    PAR    Energy conservation principle    Vegetation indexes    Non-linear mixing pixel model
收稿日期: 2013-11-01 出版日期: 2015-01-15
:  Q948.2  
基金资助:

国家973项目(2010CB951701),国家科技支撑计划课题(2013BAC03B02),国家自然科学基金项目(41201354)。

通讯作者: 刘良云(1975-),男,湖南新邵人,研究员,博士生导师,主要从事植被生态定量遥感研究。Email: lyliu@ceode.ac.cn。    
作者简介: 张健(1984-),男,陕西咸阳人,硕士研究生,主要从事植被FPAR研究。Email: zhangchanshao@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张健
刘良云
焦全军
彭代亮

引用本文:

张健,刘良云,焦全军,彭代亮. 基于能量平衡原理的FPAR遥感反演研究[J]. 遥感技术与应用, 2014, 29(6): 976-983.

Zhang Jian,Liu Liangyun,Jiao Quanjun,Peng Dailiang. Retrieval of FPAR based on Energy Conservation Principle Using Remote Sensing. Remote Sensing Technology and Application, 2014, 29(6): 976-983.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2014.6.0976        http://www.rsta.ac.cn/CN/Y2014/V29/I6/976

[1]Martinez B,Camacho F,Verger A,et al.Intercomparison and Quality Assessment of MERIS,MODIS and SEVIRI FAPAR Products over the Iberian Peninsula[J].International Journal of Applied Earth Observation and Geoinformation,2013,21:463-476.

[2]Mccallum A,Wagner W,Schmullius C,et al.Comparison of Four Global FAPAR Datasets over Northern Eurasia for The Year 2000[J].Remote Sensing of Environment,2010,114(5):941-949.

[3]Bicheron P,Leroy M.A Method of Biophysical Parameter Retrieval at Global Scale by Inversion of a Vegetation Reflectance Model[J].Remote Sensing of Environment,1999,67(3):251-266.

[4]Goward S N,Huemmrich K E.Vegetation Canopy PAR Absorptance and the Normalized Difference Vegetation Index:An Assessment Using the SAIL Model[J].Remote Sensing of Environment,1992,39(2):119-140.

[5]Chen Xueyang,Meng Jihua,Wu Bingfang,et al.Monitoring Corn FPAR based on HJ-1 CCD [[J].Transactions of the CSAE,2010,26(Sup.1):241-245.[陈雪洋,蒙继华,吴炳方等.基于HJ-1 CCD的夏玉米FPAR遥感监测模型[J].农业工程学报,2010,26(增刊):241-245.]

[6]Myneni R B,Williams D L.On the Relationship between FAPAR and NDVI [J].Remote Sensing of Environment,1994,49(3):200-211.

[7]Chen J M.Canopy Architecture and Remote Sensing of the Fraction of Photosynthetically Active Radiation Absorbed by Boreal Conifer Forests[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(6):1353-1368.

[8]Chen L F,Gao Y H,Li L,et al.Forest NPP Estimation based on MODIS Data under Cloudless Condition[J].Science in China Series D:Earth Sciences,2008,51(3):331-338.

[9]Tao Xin,Fan Wenjie,Wang Dacheng,et al.Remote Sensing Retrieval of FAPAR:Model and Analysis [J].Advances in Earth Science,2009,24(7):741-747.[陶欣,范闻捷,王大成,等.植被FAPAR的遥感模型与反演研究[J].地球科学进展,2009,24(7):741-747.]

[10]Arai K.Nonlinear Mixture Model of Mixed Pixels in Remote Sensing Satellite Images based on Monte Carlo Simulation [J].Advances in Space Research,2008,41(11):1715-1723.

[11]Adams J B,Sabol D E,Kapos V,et al.Classification of Multispectral Images based on Fractions of Endmembers:Application to Land Cover Change in The Brazilian Amazon [J].Remote Sensing,1995,52(2):137-154.

[12]Du Xiaojuan,Cheng Jimin.Analysis of Formation Causes of Grassland Degradation in Dangxiong County of Tibet and Its Exploitation and Utilization [J].Jourmal of Anhui Agricultural Science,2007,35(19):5853-5854,5944.[杜小娟,程积民.西藏当雄县草地退化成因分析及开发利用研究[J].安徽农业科学,2007,35(19):5853-5854,5944.]

[13]Liu L Y,Peng D L,Hu Y,et al.A Novel In-situ FPAR Measurement Method for Canopy Vegetation based on a Digital Camera and Reference Panel [J].Remote Sensing,2013,5(1):274-281.

[14]Wiegand C L,Richardson A J,Escobar D E,et al.Vegetation Indexes in Crop Assessments[J].Remote Sensing of Environment,1991,35(2-3):105-109.

[15]Jenkins J P,Richardson A D,Braswell B H,et al.Refining Light-use Efficiency Calculations for A Deciduous Forest Canopy Using Simultaneous Tower-based Carbon Flux and Radiometric Measurements [J].Agricultural and Forest Meteorology,2007,143(1-2):64-79.

[1] 韩涛,潘剑君,张培育,曹罗丹. Sentinel-2A与Landsat-8影像在油菜识别中的差异性研究[J]. 遥感技术与应用, 2018, 33(5): 890-899.
[2] 孟梦,牛铮. 近30 a内蒙古NDVI演变特征及其对气候的响应[J]. 遥感技术与应用, 2018, 33(4): 676-685.
[3] 吴兴,张霞,孙雪剑,张立福,戚文超. SPARK卫星高光谱数据辐射质量评价[J]. 遥感技术与应用, 2018, 33(2): 233-240.
[4] 杨朦朦,汪汇兵,欧阳斯达,范奎奎,戚凯丽. 基于双树复小波分解的BP神经网络遥感影像分类[J]. 遥感技术与应用, 2018, 33(2): 313-320.
[5] 谢京凯,王福民,王飞龙,张东尼. 面向水稻LAI监测的植被指数土壤调节参数修正[J]. 遥感技术与应用, 2018, 33(2): 342-350.
[6] 曾毓燕,施润和,刘浦东,王弘. 利用植被指数估算叶绿素含量的模型模拟研究—以PROSPECT+DART模型为例[J]. 遥感技术与应用, 2017, 32(4): 667-673.
[7] 朱钟正,陈玉福,朱文泉,郑周涛. 适用于多目标遥感自动解译的最佳专题指数筛选[J]. 遥感技术与应用, 2017, 32(3): 564-574.
[8] 吴志杰,何国金,王猛猛,傅娇凤,邹丹. 南方丘陵区植被覆盖度遥感估算与时空变化研究—以福建省永定县为例[J]. 遥感技术与应用, 2016, 31(6): 1201-1208.
[9] 张婕,张文煜,冯建东,王宏义,于泽,宋玮. 基于亮温—植被指数—气溶胶光学厚度的MODIS火点监测算法研究[J]. 遥感技术与应用, 2016, 31(5): 886-892.
[10] 沙莎,胡蝶,王丽娟,郭铌,李巧珍. 基于Landsat8OLI数据的黄土高原植被含水量的估算模型研究[J]. 遥感技术与应用, 2016, 31(3): 558-563.
[11] 杨超,王金亮,李石华,王丽霞,马骊驰,潘继亚,高帆,刘广杰. 抚仙湖流域土地退化动态遥感监测研究[J]. 遥感技术与应用, 2016, 31(2): 388-396.
[12] 张正健,李爱农,边金虎,赵伟,南希,靳华安,谭剑波. 基于无人机影像可见光植被指数的若尔盖草地地上生物量估算研究[J]. 遥感技术与应用, 2016, 31(1): 51-62.
[13] 李晓宇,李飞,包玉海,李振旺,张保辉,闫瑞瑞,辛晓平. 基于HJ-1CCD影像的呼伦贝尔草原区MODIS/FPAR产品验证与分析[J]. 遥感技术与应用, 2015, 30(6): 1129-1137.
[14] 李瑶,潘竟虎,罗晶. 基于Landsat 8影像和能量平衡的西安市热场格局研究[J]. 遥感技术与应用, 2015, 30(5): 868-875.
[15] 闻熠,黄春林,卢玲,顾娟. 基于ASTER数据黑河中游植被含水量反演研究[J]. 遥感技术与应用, 2015, 30(5): 876-883.