Please wait a minute...
img

官方微信

遥感技术与应用  2014, Vol. 29 Issue (6): 1060-1066    DOI: 10.11873/j.issn.1004-0323.2014.6.1060
图像与数据处理     
基于MODIS大气产品的天宫一号高光谱成像仪数据大气校正研究
胡勇1,2,刘良云1,张九星3,李绪志3
(1.中国科学院遥感与数字地球研究所数字地球重点实验室,北京100094;
2.中国科学院大学,北京100049;3.中国科学院空间应用工程与技术中心,北京100094)
A TG-1 Hyper-spectral Imagery Atmospheric Correction based on MODIS Atmosphere Products
Hu Yong1,2,Liu Liangyun1,Zhang Jiuxing3,Li Xuzhi3
(1.Key Laboratory of Digital Earth Science,Institute of Remote Sensing and Digital Earth,
Chinese Academy of Sciences,Beijing 100094,China;
2.University of Chinese Academy of Sciences,Beijing 100049,China;
3.Technology and Engineering Center for Space Utilization,
Chinese Academy of Sciences,Beijing 100094,China)
 全文: PDF(1102 KB)  
摘要:

天宫一号(TG-1)搭载的高光谱成像仪获取了大量的高光谱数据,可用于国土资源、农林业和油气矿产等领域的研究。但由于遥感成像时会受到大气的干扰,因此需要首先进行大气校正,消除大气的影响,才能进行遥感定量分析与应用。利用准同步的中分辨率成像光谱仪MODIS(Moderate Resolution Imaging Spectroradiometer)大气参数产品,结合6S辐射传输模型对天宫一号高光谱成像仪数据进行大气校正,并利用地面测量光谱和同步MODIS反射率数据对结果进行了验证。结果表明:经过大气校正后,天宫一号高光谱成像仪数据和地面测量光谱一致性较好,所有样点的相关系数都大于0.97,最大均方根误差为0.088。和MODIS反射相比,各波段回归直线的斜率接近1,且R2都大于0.8。

关键词: 天宫一号高光谱成像仪大气校正6S    
Abstract:

TG-1 has accumulated large number of hyper-spectral data,which could be widely use for a variety of scientific research,including land resources,agroforestry and Oil-gas resources,etc.However,a very large percentage of those imageries are severely contaminated by atmosphere.So the atmospheric correction procedure which could remove the atmosphere effects is a critical preprocessing step required for quantitative remote sensing applications.In this study,we developed a atmospheric correction procedure based on Moderate Resolution Imaging Spectrometer(MODIS)atmospheric characterization products and the Second Simulation of a Satellite Signal in the Solar Spectrum(6S)radiative transfered code for TG\|1 hyper\|spectral imagery.Then the atmospheric correction precision was assessed by using ground\|measured reflectance and MODIS reflectance.The result showed that the surface reflectance retrieved from TG\|1 hyper\|spectral is consistent with the ground measurements,with the R is bigger than 0.97,and a mean root mean square error(RMSE)is less than 0.088.And the comparison result for TG\|1 hyper-spectral and MODIS showed that the regression coefficients is closed to 1,with the R2 bigger than 0.8.

Key words: TG-1    Hyper-spectral imager    Atmospheric correction    6S
收稿日期: 2012-11-27 出版日期: 2015-01-15
:  TP 75  
基金资助:

中国科学院新型对地观测系统科技创新交叉合作团队项目和载人航天工程天宫一号民用试应用项目资助。

通讯作者: 刘良云(1975-),男,湖南邵阳人,研究员,博士生导师,主要从事植被遥感与遥感机理应用方面的研究。Email: lyliu@ceode.ac.cn。   
作者简介: 胡勇(1985-),男,重庆人,博士研究生,主要从事遥感图像处理与应用方面的研究。Email:rihor@sina.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡勇
刘良云
张九星
李绪志

引用本文:

胡勇,刘良云,张九星,李绪志. 基于MODIS大气产品的天宫一号高光谱成像仪数据大气校正研究[J]. 遥感技术与应用, 2014, 29(6): 1060-1066.

Hu Yong,Liu Liangyun,Zhang Jiuxing,Li Xuzhi. A TG-1 Hyper-spectral Imagery Atmospheric Correction based on MODIS Atmosphere Products. Remote Sensing Technology and Application, 2014, 29(6): 1060-1066.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2014.6.1060        http://www.rsta.ac.cn/CN/Y2014/V29/I6/1060

[1]Applying Results of TG-1[P/OL].http://www.cmse.gov.cn/news/list.php?catid=459[天宫一号应用成果展示[P/OL].http://www.cmse.gov.cn/news/list.php?catid=459.]

[2]Roy D P,Ju J,Kline K,et al.Web-enabled Landsat Data(WELD):Landsat ETM+ Composited Mosaics of the Conterminous United States[J].Remote Sensing of Environment,2010,114(1):35-49.

[3]Liang S L,Fang H L,Chen M Z.Atmospheric Correction of Landsat ETM+ Land Surface Imagery.I.Methods[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(11):2490-2498.

[4]Huete A,Didan K,Miura T,et al.Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices[J].Remote Sensing of Environment,2002,83(1):195-213.

[5]Liang S L,Zheng T,Liu R G,et al.Estimation of Incident Photosynthetically Active Radiation from Moderate Resolution Imaging Spectrometer Data[J].Journal of Geophysical Research:Atmospheres,2006,111(D15):D15208.

[6]Vermote E F,El Saleous N Z,Justice C O.Atmospheric Correction of MODIS Data in the Visible to Middle Infrared:First Results[J].Remote Sensing of Environment,2002,83(1):97-111.

[7]Itten K I,Meyer P.Geometric and Radiometric Correction of TM Data of Mountainous Forested Areas[J].IEEE Transactions on Geoscience and Remote Sensing,1993,31(4):764-770.

[8]Zheng W,Liu C,Zeng Z Y,et al.A Feasible Atmospheric Correction Method to TM Image[J].Journal of China University of Mining and Technology,2007,17(1):112-115.

[9]Jiménez-Muoz J C,Sobrino J A,Mattar C,et al.Atmospheric Correction of Optical Imagery from MODIS and Reanalysis Atmospheric Products[J].Remote Sensing of Environment,2010,114(10):2195-2210.

[10]Li F Q,Jupp D L,Reddy S,et al.An Evaluation of the Use of Atmospheric and BRDF Correction to Standardize Landsat Data[J].IEEE Journal of  Selected Topics in Applied Earth Observations and Remote Sensing ,2010,3(3):257-270.

[11]Zheng Q G,Quan W T.Application of Dark Pixels Atmospheric Correction Algorithm to Hyperion Imageries[J].Spectroscopy and Spectral Analysis,2010,30(10):2710-2713.

[12]Ju J,Roy D P,Vermote E F,et al.Continental-scale Validation of MODIS-based and LEDAPS Landsat ETM+ Atmospheric Correction Methods[J].Remote Sensing of Environment,2012,122:175-184.

[13]Chander G,Markham B L,Helder D L.Summary of Current Radiometric Calibration Coefficients for Landsat MSS,TM,ETM+,and EO-1 ALI Sensors[J].Remote Sensing of Environment,2009,113(5):893-903.

[14]Remerl L A,Tanré D ,Kaufman Y J.MODIS ATBD: Algorithm for Remote Sensing of Tropospheric Aerosol from MODIS[EB/OL].http://modis.gsfc.nasa.gov/data/atbd/atbd_mod02.pdf,2006.

[15]King M D,Tsay S C,Platnick S E,et al.MODIS ATBD:Cloud Retrieval Algorithms for MODIS:Optical thickness,Effective Particle Radius,and Thermodynamic Phase[EB/OL].http://cimss.ssec.wisc.edu/dbs/China2011/Day2/Lectures/MOD06OD_Algorithm_Theoretical_Basis_Document.pdf,1997-12-23.

[16]Menzel W,Seemann S,Li J,et al.MODIS ATBD:MODIS Atmospheric Profile Retrieval Algorithm Theoretical Basis Document(MOD-07)[EB/OL].http://modis- atmos.gsfc.nasa.gov/_docs/MOD07_atbd_v7_April2011.pdf,2001-4-6.

[17]Feng M,Huang C Q,Channan S,et al.Quality Assessment of Landsat Surface Reflectance Products Using MODIS Data[J].Computers & Geosciences,2012,38(1):9-22.

[18]Tanré D,Deroo C,Duhaut P,et al.Technical Note Description of a Computer Code to Simulate the Satellite Signal in the Solar Spectrum:the 5S Code[J].International Journal of Remote Sensing,1990,11(4):659-668.

[19]Vermote E F,Tanré D,Deuze J,et al.Second Simulation of the Satellite Signal in the Solar Spectrum,6S:an Overview[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(3):675-686.

[20]Vermote E F,Tanré D,Deuzé J,et al.Second Simulation of A Satellite Signal in the Solar Spectrum-Vector(6SV)[EB/OL].http://6s.ltdri.org/6S_code2_thiner_stuff/6S_Manual_Part_1.pdf,2006-11.

[21]Vermote E F,El Saleous N,Justice C,et al.Atmospheric Correction of Visible to Middle-Infrared EOS-MODIS Data over Land Surfaces:Background,Operational Algorithm and Validation[J].Journal of Geophysical Research:Atmospheres,1997,102(D14):17131-17141.

[1] 邢晓达,申茜,李俊生,张方方,庞治国,吕书强. 基于HJ-CCD的漫湾坝区河流悬浮物浓度遥感反演[J]. 遥感技术与应用, 2016, 31(4): 682-690.
[2] 李述,刘琪璟. 高程和大气模式对FLAASH模型校正结果的影响[J]. 遥感技术与应用, 2015, 30(5): 939-945.
[3] 吴岩真,闻建光,王佐成,唐勇,窦宝成. 遥感影像地形与大气校正系统设计与实现[J]. 遥感技术与应用, 2015, 30(1): 106-114.
[4] 陈浩,麻金继,王传辉. 利用多元遥感数据进行CBERS-02卫星大气校正研究[J]. 遥感技术与应用, 2014, 29(6): 1020-1026.
[5] 马yan,李正强,李浩. 卫星影像大气校正中气溶胶模型的影响分析—以天津地区为例[J]. 遥感技术与应用, 2014, 29(3): 410-418.
[6] 崔喜爱,曾琪明,童庆禧,焦健,梁存任. 重轨星载InSAR测量中的大气校正方法综述[J]. 遥感技术与应用, 2014, 29(1): 9-17.
[7] 李振旺,刘良云,张 浩,张九星,李绪志. 天宫一号高光谱成像仪在轨辐射定标与验证[J]. 遥感技术与应用, 2013, 28(5): 850-857.
[8] 娄明静,邢前国,施平. 海岸带高光谱遥感与近海高光谱成像仪(HICO)[J]. 遥感技术与应用, 2013, 28(4): 627-632.
[9] 王嘉楠,叶勤,林怡. 不同大气校正方法对中小湖泊蓝藻遥感动态监测的影响[J]. 遥感技术与应用, 2013, 28(1): 157-164.
[10] 周春城,李传荣,胡坚,马灵玲,于钢. 基于行频变化的航空高光谱成像仪相对辐射校正方法研究[J]. 遥感技术与应用, 2012, 27(1): 33-38.
[11] 石锋,沙晋明,张友水,刘霞. 基于高程分层方法的HJ-1B CCD2影像大气校正[J]. 遥感技术与应用, 2011, 26(6): 775-781.
[12] 王正海,段建军,耿欣. 基于波谱匹配的Hyperion数据大气校正方法对比研究[J]. 遥感技术与应用, 2011, 26(4): 432-436.
[13] 李传荣, 贾媛媛, 马灵玲. 干涉成像光谱遥感技术发展与应用[J]. 遥感技术与应用, 2010, 25(4): 451-457.
[14] 马灵玲, 王新鸿, 唐伶俐. HJ-1A高光谱数据高效大气校正及应用潜力初探[J]. 遥感技术与应用, 2010, 25(4): 525-531.
[15] 杨静学,王云鹏,杨勇. 基于高程或气溶胶厚度与6S模型校正参数回归方程的遥感图像大气校正模型[J]. 遥感技术与应用, 2009, 24(3): 331-340.