Please wait a minute...
img

官方微信

遥感技术与应用  2015, Vol. 30 Issue (3): 534-539    DOI: 10.11873/j.issn.1004-0323.2015.3.0534
图像与数据处理     
面向海量点云快速显示的叠加型金字塔索引结构研究
曾祥钊1,2,李传荣1,张正1,周梅1
(1.中国科学院光电研究院定量遥感信息技术重点实验室,北京100094;
2.中国科学院大学,北京 100049)
Research on Superimposition Pyramid Index Applied to Massive Points Cloud Fast Display
Zeng Xiangzhao1,2,Li Chuanrong1,Zhang Zheng1,Zhou Mei1
(1.Key Laboratory of Quantitative Remote Sensing Information Technology,Academy of
Opto-electronics,Chinese Academy of Sciences,Beijing 100094,China;
2.University of Chinese Academy of Sciences,Beijing 100049,China)
 全文: PDF(2458 KB)  
摘要:

针对激光雷达三维点云数据量大,当计算机内存有限时进行点云读取与处理存在严重滞后的问题,提出了一种叠加型金字塔索引结构。首先,采用一种基于点云最小外包络的不均匀分块策略,将点云数据划分成若干独立的数据块;待分块完成后,利用提出的叠加型索引结构对每个分块构建金字塔;最后,将生成的金字塔按照指定的文件结构存储,生成索引文件。利用机载实测点云数据开展了验证实验,结果表明:该算法有效地降低了索引文件占据的计算机空间资源,实现了海量三维点云数据在有限内存空间的快速显示。

关键词: 激光雷达点云三维显示金字塔    
Abstract:

With the development of LiDAR technology,the size of acquired data,known as point cloud has increased rapidly.However,the visualization of massive point cloud proves difficult due to the limited computer memory.To effectively visualize the massive point cloud,numerous data structures have been proposed.Among them,pyramid index structure is an effective method of the fast display for massive point cloud.In order to overcome the display delay caused by limited computer memory,this paper introduces pyramid index structure and proposes an innovative index structure that called superimposition pyramid index structure to improve the performance of the fast display for massive point cloud.First,point cloud data is divided into several cells.Within each cell,the point cloud data is then rearranged according to the structure of superimposition pyramid index proposed in this paper.Finally,each cell is organized to form an index file.The above structure has been implemented and the experiment on point cloud data from airborne LiDAR proves that the superimposition pyramid index structure effectively reduces the consumption of memory cost and accomplishes the fast display for massive point cloud.〖JP〗

Key words: LiDAR point cloud    Fast display    Index    Pyramid structure
收稿日期: 2014-01-21 出版日期: 2015-08-14
:  TP 75  
基金资助:

国家重大专项项目“激光雷达数据处理技术”,中国科学院光电研究院创新项目“面向精细分类需求的全波形激光雷达数据处理与应用技术研究”(Y12403A01Y)。

通讯作者: 李传荣(1956-),男,湖南醴陵人,研究员,主要从事遥感卫星地面应用系统研究。Email:crli@aoe.ac.cn。    
作者简介: 曾祥钊(1989-),男,河南郑州人,硕士研究生,主要从事激光雷达技术应用方面的研究。Email:xiangzhao89@126.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曾祥钊
李传荣
张正
周梅

引用本文:

曾祥钊,李传荣,张正,周梅. 面向海量点云快速显示的叠加型金字塔索引结构研究[J]. 遥感技术与应用, 2015, 30(3): 534-539.

Zeng Xiangzhao,Li Chuanrong,Zhang Zheng,Zhou Mei. Research on Superimposition Pyramid Index Applied to Massive Points Cloud Fast Display. Remote Sensing Technology and Application, 2015, 30(3): 534-539.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2015.3.0534        http://www.rsta.ac.cn/CN/Y2015/V30/I3/534

[1]Guttman A.R-Trees:A Dynamic Index Structure for Spatial Searching[M].San Francisco,California,USA:Association for Computing Machinery (ACM),1984,14(2):47-57.

[2]Ooi B C,McDonell K J,Sacks-Davis R.Spatial Kd-tree:An Indexing Mechanism for Spatial Databases[C]//IEEE International Computer Software and Applications Conference,1987,87(10):85.

[3]Samet H.The Quadtree and Related Hierarchical Data Structures[J].ACM Computing Surveys (CSUR),1984,16(2):187-260.

[4]Beckmann N,Kriegel H P,Schneider R,et al.The R-tree:An Efficient and Robust Access Method for Points and Rectangles[J].International Conference on Management of Data,1990,19(2):322-331.

[5]Rusinkiewicz S,Levoy M.QSplat:A Multiresolution Point Rendering System for Large Meshes[C]//Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques.Association for Computing Machinery(ACM) Press/Addison-Wesley Publishing Company,San Francisco,California,USA,2000:343-352.

[6]Zhi Xiaodong,Lin Zongjian,Su Guozhong,et al.Research on Organization of Airboren LiDAR Points Cloud based on Improved Quadtree Algorithm[J].Computer Engineering and Applications,2010,46(9):71-74.[支晓栋,林宗坚,苏国中,等.基于改进四叉树的LiDAR点云数据组织研究[J].计算机工程与应用,2010,46(9):71-74.]

[7]Gong Jun,Xie Xiao.Three Dimension Visualization Query Method based on R2 Tree[J].Geomatics and Information Science of Wuhan University,2011,36(10):1140-1143,1153.[龚俊,谢潇.基于R树索引的三维可视化查询方法[J].武汉大学学报(信息科学版),2011,36(10):1140-1143,1153.]

[8]Lu Mingyue,He Yongjian.Organization and Indexing Method for 3D Points Cloud Data[J].Geo-information Science,2008,10(2):190-194.[路明月,何永健.三维海量点云数据的组织与索引方法[J].地球信息科学,2008,10(2):190-194.]

[9]Zhao Nan.A Hybrid Structure of Spatial Multilevel Index based on Grids and R-tree[J].Computer Technology and Development,2009,19(3):91-94.[赵楠.一种基于网格与R树的多级混合索引[J].计算机技术与发展,2009,19(3):91-94.]

[10]Liu Yi,Chen Luo,Jing Ning,et al.Parallel Batch-building Remote Sensing Images Tile Pyramid with Map Reduce[J].Geomatics and Information Science of Wuhan University,2013,38(3):278-282.[刘义,陈荦,景宁,等.利用MapReduce进行批量遥感影像瓦片金字塔构建[J].武汉大学学报(信息科学版),2013,38(3):278-282.]

[11]Luebke D,Martin R,Jonathan D,et al.Level of Detail for 3D Graphpics[M].San Francisco,California,USA:Morgan Kaufmann Publish,2003.

[1] 李盛阳,于海军,韩洁,黑保琴. 基于三维地球的海量遥感影像高效可视化管理系统的设计与实现[J]. 遥感技术与应用, 2016, 31(1): 170-176.
[2] 王锐君. 县域地理空间信息平台电子地图发布与共享的方法[J]. 遥感技术与应用, 2011, 26(5): 598-604.
[3] 雷琳, 粟毅. 一种基于轮廓匹配的近岸舰船检测方法[J]. 遥感技术与应用, 2007, 22(5): 622-627.
[4] 曹广真 , 侯鹏, 金亚秋, 毛显强. 基于纹理特征的拉普拉斯金字塔形微波遥感图像融合[J]. 遥感技术与应用, 2007, 22(5): 628-632.
[5] 李晓春,陈 京. 基于小波变换的图像融合算法研究[J]. 遥感技术与应用, 2003, 18(1): 27-30.
[6] 夏明革,何 友,欧阳文. 像素级图像融合方法与融合效果评价[J]. 遥感技术与应用, 2002, 17(4): 224-229.
[7] 吴 旷,郭 立. 运动平台下基于MAX金字塔和仿射运动的红外图像目标检测方法[J]. 遥感技术与应用, 2002, 17(2): 108-111.