Please wait a minute...
img

官方微信

遥感技术与应用  2016, Vol. 31 Issue (1): 12-22    DOI: 10.11873/j.issn.1004-0323.2016.1.0012
山地遥感专栏     
基于MODIS NDVI的Landsat TM影像地形阴影区光谱信息恢复方法研究
边金虎1,2,李爱农1,王少楠1,2,赵伟1,雷光斌1,2
(1.中国科学院水利部成都山地灾害与环境研究所,四川 成都610041;
2.中国科学院大学,北京100049)
Restoration of Information Obscured by Mountain Shadows for Landsat TM Images based on MODIS NDVI
Bian Jinhu1,2,Li Ainong1,Wang Shaonan1,2,Zhao Wei1,Lei Guangbin1,2
(1.Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu 610041,China;
2.University of Chinese Academy of Sciences,Beijing 100049,China)
 全文: PDF(5974 KB)  
摘要:

遥感为获取山区生态环境与资源信息提供了重要的观测手段。然而受地形遮蔽影响,山区光学影像大量的地形阴影给山区土地覆被解译以及生态参量的遥感反演带来了巨大困难。针对地形阴影光谱信息的恢复,提出了一种基于MODIS NDVI的Landsat TM影像地形阴影区光谱信息恢复方法。该方法首先利用MODIS上午、下午星(Terra和Aqua)不同时间过境能够对地形阴影区信息实现互补的特点,采用最大值合成法合成MODIS上、下午星16 d NDVI产品(MOD13Q1和MYD13Q1),获得低空间分辨率影像上的阴影区光谱信息;在此基础上,考虑MODIS与Landsat的观测角度、光谱差异,设置滑动窗口及筛选规则提取MODIS与TM影像相匹配的同质纯像元;基于中、低空间分辨率影像中均匀同质像元存在一定统计关系的假设,进一步建立同质区域中TM影像光照区域与对应MODIS NDVI的回归树模型,利用该统计关系和阴影区MODIS的NDVI信息推导得出地形阴影区的光谱信息。将阴影光谱信息恢复后的影像与SCS+C校正后的影像进行比较和分析,结果表明该方法恢复得到的地形阴影的光谱信息能够更好地反映阴影区信息,同时光谱保真程度较好。随着越来越多的中高空间分辨率卫星影像的发展,采用多源卫星数据进行山地地形阴影区信息恢复将成为一个新的发展趋势,该方法以期为同类影像处理提供参考。

关键词: 地形辐射校正MODIS NDVI地形阴影信息恢复Landsat回归树    
Abstract:

Remote sensing is a key technology for the monitoring of land cover and land use change and the retrieving of bio\|physical parameters of vegetation in mountainous area.However,due to the obscuring by terrain relief,the mountainous shadows in the optical remote sensing images have brought great difficulties for the remote sensing applications in mountain area.In this paper,a new method for the restoration of information obscured by mountain shadows was proposed.This method took advantage of the characteristics of MODIS Aqua and Terra,whose time of passing territory are morning and afternoon separately,to compose the information sources for the shadow area on high resolution images.Then the homogenous pixels in both MODIS and TM were selected based on the angle filter,cloud filter and homogenous filter.Based on the hypothesis that the statistics relationship exists for the homogenous pixels between MODIS and TM,the proposed method further built up a regression tree model for the sun\|light area,and then used the built model to predict information of the shadow area in Landsat TM images.According to the comparison of the restoration result between the proposed method and SCS+C model,the method in this paper can better reflect the detail information of the shadow area and simultaneously preserve the information of sun\|light area well.With the development of new high spatial resolution sensors such as Sentinel\|2A/B and Landsat 8 Operational Land Imager,using multi\|sources data to restore information of mountainous shadow area is a new development tendency,and the proposed method in this paper can be used as a reference for those similar satellite datasets.

Key words: Topographic correction    MODIS NDVI    Mountainous shadow    Information restortion    Landsat    Regression tree
收稿日期: 2015-12-10 出版日期: 2016-04-05
:  TP 75  
基金资助:

国家自然科学基金项目(41271433,41571373),中国科学院“百人计划”项目,中国科学院国际合作重点部署项目(GJHZ201320),中国科学院国际合作创新团队项目(KZZD-EW-TZ-06)共同资助。

通讯作者: 李爱农(1974-),男,安徽庐江人,研究员,中国科学院“百人计划”、四川省“千人计划”入选者,主要从事山地定量遥感及其应用研究。Email:ainongli@imde.ac.cn。   
作者简介: 边金虎(1984-),男,安徽阜阳人,助理研究员,主要从事山地遥感影像时空融合方法与应用研究。Email:bianjinhu@imde.ac.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
边金虎
李爱农
王少楠
赵伟
雷光斌

引用本文:

边金虎,李爱农,王少楠,赵伟,雷光斌. 基于MODIS NDVI的Landsat TM影像地形阴影区光谱信息恢复方法研究[J]. 遥感技术与应用, 2016, 31(1): 12-22.

Bian Jinhu,Li Ainong,Wang Shaonan,Zhao Wei,Lei Guangbin. Restoration of Information Obscured by Mountain Shadows for Landsat TM Images based on MODIS NDVI. Remote Sensing Technology and Application, 2016, 31(1): 12-22.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2016.1.0012        http://www.rsta.ac.cn/CN/Y2016/V31/I1/12

[1]Deng Wei,Cheng Genwei,Wen Anbang.The Conception of Mountain Science Development in China[J].Bulletin of Chinese Academy of Sciences,2008,23(2):156-161.[邓伟,程根伟,文安邦.中国山地科学发展构想[J].中国科学院院刊,2008,23(2):156-161.]

[2]Li A,Wang A,Liang S,et al.Eco-environmental Vulnerability Evaluation in Mountainous Region Using Remote Sensing and GIS—A Case Study in the Upper Reaches of Minjiang River,China[J].Ecological Modelling,2006,192(1):175-187.

[3]Li A,Jiang J,Bian J,et al.Combining the Matter Element Model with the Associated Function of Probability Transformation for Multi-source Remote Sensing Data Classification in Mountainous Regions[J].ISPRS Journal of Photogrammetry and Remote Sensing,2012,67:80-92.

[4]Tan B,Masek J G,Wolfe R,et al.Improved Forest Change Detection with Terrain Illumination Corrected Landsat Images[J].Remote Sensing of Environment,2013,136:469-483.

[5]Vanonckelen S,Lhermitte S,Van Rompaey A.The Effect of Atmospheric and Topographic Correction on Pixel-based Image Composites:Improved Forest Cover Detection in Mountain Environments[J].International Journal of Applied Earth Observation and Geoinformation,2015,35:Part B(0):320-328.

[6]Soenen S A,Peddle D R,Coburn C A.SCS+C:A Modified Sun-Canopy-Sensor Topographic Correction in Forested Terrain[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(9):12.

[7]Holben B,Justice C.An Examination of Spectral Band Ratioing to Reduce the Topographic Effect on Remotely Sensed Data[J].International Journal of Remote Sensing,1981,2(3):115-133.

[8]Teillet P M,Guindon B,Goodenough D G.On the Slope-aspect Correction of Multi-spectral Scanner Data[J].Canadian Journal of Remote Sensing,1982,8(2):84-106.

[9]Smith J A,Lin T L,Ranson K J.The Lambertian Assumption and Landsat Data[J].Photogrammetric Engineering and Remote Sensing,1980,46:1183-1189.

[10]Gu D,Alan G.Topographic Normalization of Landsat TM Images of Forest based on Sub-pixel Sun-Canopy-Sensor Geometry[J].Remote Sensing of Environment,1998,64(2):166-175.

[11]Soenen S A,Peddle D R,Coburn C A.SCS+C:A Modified Sun-Canopy-Sensor Topographic Correction in Forested Terrain[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(9):2148-2159.

[12]Sandmeier S,Itten K I.A Physically-based Model to Correct Atmospheric and Illumination Effects in Optical Satellite Data of Rugged Terrain[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(3):708-717.

[13]Proy C,Tanre D,Deschamps P Y.Evaluation of Topographic Effects in Remotely Sensed Data[J].Remote Sensing Environment,1989,30:21-32.

[14]Li F,Jupp D L,Thankappan M,et al.A Physics-based Atmospheric and BRDF Correction for Landsat Data over Mountainous Terrain[J].Remote Sensing of Environment,2012,124:756-770.

[15]Li A,Wang Q,Bian J,et al.An Improved Physics-based Model for Topographic Correction of Landsat TM Images[J].Remote Sensing,2015,7(5):6296-6319.

[16]Luo J,Chen Y,Wu Y,et al.Temporal-spatial Variation and Controls of Soil Respiration in Different Primary Succession Stages on Glacier Forehead in Gongga Mountain,China[J].PLoS ONE,2012,7(8):e42354.doi:10.1871/jounal.pone.0042354.

[17]Gutman G,Huang C,Chander G,et al.Assessment of the NASA-USGS Global Land Survey (GLS) Datasets[J].Remote Sensing of Environment,2013,134:249-265.

[18]Li Ainong,Jiang Jingang,Bian Jinhu,et al.Experiment and Accuracy Analysis of Automated Registration and Orthorectification for Landsat-like Images based on AROP[J].Remote Sensing Terchnology and Application,2012,27(1):23-32.[李爱农,将锦刚,边金虎,等.基于AROP程序包的类Landsat遥感影像配准与正射纠正试验和精度分析[J].遥感技术与应用,2012,27(1):23-32.]

[19]Vermote E.Saleous N.LEDAPS Surface Reflectance Product Description[Z/OL].https://dwrgis.water.ca.gov/documents/269784/4654504/LEDAPS+Surface+Reflectance+Product+Description.pdf.2007.

[20]Schaaf C B,Gao F,Strahler A H,et al.First Operational BRDF,Albedo Nadir Reflectance Products from MODIS[J].Remote Sensing of Environment,2002,83(1-2):135-148.

[21]Huang C,Townshend J R G,Liang S,et al.Impact of Sensor's Point Spread Function on Land Cover Characterization:Assessment and Deconvolution[J].Remote Sensing of Environment,2002,80(2):203-212.

[22]Ouaidrari H,Vermote E F.Operational Atmospheric Correction of Landsat TM Data[J].Remote Sensing of Environment,1999,70(1):4-15.

[23]Feng M,Sexton J O,Huang C,et al.Global Surface Reflectance Products from Landsat:Assessment Using Coincident MODIS Observations[J].Remote Sensing of Environment,2013,134(0):276-293.

[24]Huang C,Peng Y,Lang M,et al.Wetland Inundation Mapping and Change Monitoring Using Landsat and Airborne LiDAR Data[J].Remote Sensing of Environment,2014,141:231-242.

[25]Zhou Y,Chen J,Guo Q,et al.Restoration of Information Obscured by Mountainous Shadows through Landsat TM/ETM Plus Images without the Use of DEM Data:A New Method[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(1):313-328.

[26]Wulder M A,Hilker T,White J C,et al.Virtual Constellations for Global Terrestrial Monitoring[J].Remote Sensing of Environment,2015,170:62-76.

[27]Liang S,Fang H,Chen M,et al.Validating MODIS Land Surface Reflectance and Albedo Products:Methods and Preliminary Results[J].Remote Sensing of Environment,2002,83(1-2):149-162.

[28]Running S W,Justice C O,Salomonson V,et al.Terrestrial Remote-sensing Science and Algorithms Planned for EOS MODIS[J].International Journal of Remote Sensing,1994,15(17):3587-3620.

[1] 汪子豪,秦其明,孙元亨. 基于BP神经网络的地表温度空间降尺度方法[J]. 遥感技术与应用, 2018, 33(5): 793-802.
[2] 李军,龚围,辛晓洲,高阳华. 重庆地表温度的遥感反演及其空间分异特征[J]. 遥感技术与应用, 2018, 33(5): 820-829.
[3] 金点点,宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[4] 韩涛,潘剑君,张培育,曹罗丹. Sentinel-2A与Landsat-8影像在油菜识别中的差异性研究[J]. 遥感技术与应用, 2018, 33(5): 890-899.
[5] 施佩荣,陈永富,刘华,吴云华. 基于分割评价函数的多尺度分割参数的选择[J]. 遥感技术与应用, 2018, 33(4): 628-637.
[6] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[7] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[8] 卢惠敏,李飞,张美亮,杨刚,孙伟伟. 景观格局对杭州城市热环境年内变化的影响分析[J]. 遥感技术与应用, 2018, 33(3): 398-407.
[9] 钟函笑,边金虎,李爱农. Landsat-8 OLI与Sentinel-2 MSI山区遥感影像辐射一致性研究[J]. 遥感技术与应用, 2018, 33(3): 428-438.
[10] 史新,周买春. 基于Landsat 8数据的3种地表温度反演算法在三河坝流域的对比分析[J]. 遥感技术与应用, 2018, 33(3): 465-475.
[11] 李珊珊,蒋耿明. 基于通用分裂窗算法和Landsat-8数据的地表温度反演研究[J]. 遥感技术与应用, 2018, 33(2): 284-295.
[12] 赵航,陈方, 张美美. 基于改进C-V模型的冰湖轮廓提取方法研究[J]. 遥感技术与应用, 2018, 33(1): 177-184.
[13] 张雅,尹小君,王伟强. 基于Landsat 8 OLI遥感影像的天山北坡草地地上生物量估算[J]. 遥感技术与应用, 2017, 32(6): 1012-1021.
[14] 扎西央宗,李林,卓玛,冯岩,李学东,白玛央宗. 西藏年楚河流域冰川变化监测方法研究[J]. 遥感技术与应用, 2017, 32(6): 1126-1131.
[15] 何炳伟,赵伟,李爱农,冯文兰,谭剑波,雷光斌,南希. 基于Landsat 8遥感影像的新旧城区热环境特征对比研究-以成都市为例[J]. 遥感技术与应用, 2017, 32(6): 1141-1150.