Please wait a minute...
img

官方微信

遥感技术与应用  2016, Vol. 31 Issue (4): 739-747    DOI: 10.11873/j.issn.1004-0323.2016.4.0739
数据与图像处理     
基于非局部自相似性的遥感图像稀疏去噪算法
张从梅,孙权森,王超,封磊,顾一禾
(南京理工大学计算机科学与工程学院,江苏 南京 210094)
Remote Sensing Image De-noising via Sparse Representation based on Non-local Self-similarity
Zhang Congmei,Sun Quansen,Wang Chao,Feng Lei,Gu Yihe
(School of Computer Science and Engineering,Nanjing University of
Science and Technology,Nanjing 210094,China)
 全文: PDF(13489 KB)  
摘要:

基于非局部自相似性的遥感图像稀疏去噪方法研究,在为后续的图像分析、识别以及较高层次的处理提供保证方面具有重要意义。针对遥感图像中存在非局部自相似性和稀疏性,在分析传统稀疏去噪模型的基础上,将具有相似结构的非局部块构建成组,用组作为稀疏表示单元,利用基于组正则化稀疏模型进行图像去噪。此外,针对采用整幅图像进行字典学习具有高计算复杂度,分析组特点,为每个组自适应学习一个字典。最后,为获得有效的去噪结果,利用迭代收缩阈值算法解决L0最小化问题。以“资源三号”遥感图像为数据进行实验,结果表明,该算法能较好地去除遥感图像的噪声,提高图像的峰值信噪比,保持图像结构信息。基于非局部自相似性的遥感图像稀疏去噪算法能够充分利用图像块信息有效的去除图像中的噪声,提高图像质量。

关键词: 非局部自相似性稀疏表示字典学习去噪遥感图像    
Abstract:

Through the Image De-noising method study of remote sensing via sparse representation based on non-local self-similarity,the following image analysis,recognition and higher levels of processing can be provided assurance,which is important.Due to non-local self-similarity and sparsity of remote sensing images,on the basis of traditional sparse representation de-noising model,the group is composed of non-local patches with similar structures,which is exploited as the unit of sparse representation,and group-based sparse representation is used for image de-noising.In addition,because learning a dictionary of the whole image has high computational complexity,the characteristics of group is analyzed,and self-adaptive dictionary of each group is learned.Finally,in order to obtain an effective de\|noising result,the iterative shrinkage thresholding algorithm is developed to solve the L0 minimization problem.The results of the "Resource III" remote sensing images showed that the algorithm can better remove noise of remote sensing images,improve the peak signal to noise ratio and keep the structural information.Based on non\|local self-similarity,the information of patches can be fully used for the image de-noising,so this method can improve the image quality.

Key words: Non\    local self-similarity;Sparse representation;Dictionary learning;De-noising;Remote sensing image
收稿日期: 2015-05-08 出版日期: 2016-10-14
:  TP 753  
基金资助:

国家自然科学基金项目(61273251)。

通讯作者: 孙权森(1963-),男,江苏南京人,教授,主要从事模式识别,图像处理与遥感信息处理方面的研究。Email:qssun@126.com。    
作者简介: 张从梅(1992-),女,安徽滁州人,硕士研究生,主要从事图像处理方面的研究。Email:zcm19209112@126.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张从梅
孙权森
王超
封磊
顾一禾

引用本文:

张从梅,孙权森,王超,封磊,顾一禾. 基于非局部自相似性的遥感图像稀疏去噪算法[J]. 遥感技术与应用, 2016, 31(4): 739-747.

Zhang Congmei,Sun Quansen,Wang Chao,Feng Lei,Gu Yihe. Remote Sensing Image De-noising via Sparse Representation based on Non-local Self-similarity. Remote Sensing Technology and Application, 2016, 31(4): 739-747.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2016.4.0739        http://www.rsta.ac.cn/CN/Y2016/V31/I4/739

[1]Elad M,Aharon M.Image Denoising via Sparse and Redundant Representations over Learned Dictionaries[J].IEEE Transaction on Image Processing,2006,15(12):3736-3745.[2]Mairal J,Elad M,Sapiro G.Sparse Representation for Color Image Restoration[J].IEEE Transaction on Image Processing,2008,17(1):53-69.

[3]Elad M,Figueiredo M A T,Ma Y.On the Role of Sparse and Redundant Representations in Image Processing[J].Proceedings of the IEEE,2010,98(6):972-982.

[4]Buades A,Coll B,Morel J M.A Non-local Algorithm for Image Denoising[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005:60-65.[5]Wang J,Guo Y W,Ying Y T,et al.Fast Non-local Algorithm for Image Denoising[C]//IEEE International Conference on Image Processing,2006:1429-1432.

[6]Dabov K,Foi A,Katkovnik V,et al.Image Denoising by Sparse 3-D Transform Domain Collaborative Filtering[J].IEEE Transaction on Image Processing,2007,16(8):2080-2095.

[7]Chatterjee P,Milanfar P.Clustering-based Denoising with Locally Learned Dictionaries[J].IEEE Transaction on Image Processing,2009,18(7):1438-1451.

[8]Mairal J,Bach F,Ponce J,et al.Non-local Sparse Models for Image Restoration[C]//IEEE International Conference on Computer Vision,2009:2272-2279.

[9]Dong W S,Zhang L,Shi G M,et al.Nonlocally Centralized Sparse Representation for Image Restoration[J].IEEE Transaction on Image Processing,2013,22(4):1620-1630.[10]Wu Wenbo,Zhang Xun,Chen Jing.Improvement of Wavelet Threshold and Application in Remote Sensing Images[J].Remote Sensing Technology and Application,2007,22(6):722-726.[武文波,张迅,陈静.小波阈值的改进及在遥感图像去噪中的应用[J].遥感技术与应用,2007,22(6):722-726.]

[11]Zhang Jiuxing,Hei Baoqin,Li Shengyang,et al.Remote Sensing Image Noise Removal Research based on Variational Method[J].Remote Sensing Technology and Application,2010,25(4):560-566.[张九星,黑保琴,李盛阳,等.基于变分方法的遥感图像去噪研究[J].遥感技术与应用,2010,25(4):560-566.]

[12]Wang Xianghai,Li Fang,Song Chuanming.Remote Sensing Image De-noising based on Local Adaptive Mixture Model[J].Journal of Image and Graphics,2011,16(7):1289-1296.[王相海,李放,宋传鸣.局部自适应混合模型的遥感图像去噪算法[J].中国图象图形学报,2011,16(7):1289-1296.]

[13]Yuan Q Q,Zhang L P,Shen H F.Hyperspectral Image Denoising Employing a Spectral-Spatial Adaptive Total Variation Model[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(10):3660-3677.

[14]Xue B D,Huang Y,Yang J H,et al.Fast Nonlocal Remote Sensing Image Denising Using Cosine Integral Images[J].IEEE Geoscience and Remote Sensing Letters,2013,10(6):1309-1313.

[15]Qin Zhentao,Yang Wunian,Pan Peifen.The Remote Sensing Image Denosing of “The First Satellite of High Resolution” based on Sparse Representation and Dictionary Learning[J].Opto-Electronic Engineering,2013,40(9):16-21.[秦振涛,杨武年,潘佩芬.基于稀疏表示和自适应字典学习的“高分一号”遥感图像去噪[J].光电工程,2013,40(9):16-21.][16]Chang Y,Yan L X,Fang H Z.Simultaneous Destriping and Denoising for Remote Sensing Images with Unidirectional Total Variation and Sparse Representation[J].IEEE Geoscience and Remote Sensing Letters,2014,11(6):1051-1055.

[17]Zhang Jiyao,Zhang Xie,Liu Xiao,et al.Investigation on Adaptive Denoising of Remote Sensing Image[J].Journal of Atmospheric and Environmental Optics,2011,6(5):368-376.[张继尧,张渫,刘晓,等.遥感图像自适应去噪方法研究[J].大气与环境光学报,2011,6(5):368-376.]

[18]Engan K,Aase S O,Hakon Husoy J.Method of Optimal Directions for Frame Design[C]//IEEE International Conference on Acoustics,Speech,and Signal Processing,1999:2443-2446.

[19]Aharon M,Elad M,Bruckstein A.K-SVD:An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation[J].IEEE Transaction on Signal Processing,2006,54(11):4311-4322.

[20]Pan Zongxu,Huang Huijuan,Yu Jing,et al.Super-resolution Method based on CS and Structural Self-similarity for Remote Sensing Images[J].Signal Processing,2012,28(6):859-872.[潘宗序,黄慧娟,禹晶,等.基于压缩感知与结构自相似性的遥感图像超分辨率方法[J].信号处理,2012,28(6):859-872.]

[21]Zhang Xia,Sun Weichao,Shu Tong,et al.Image Destriping Method based on Wavelet Transform[J].Remote Sensing Technology and Application,2015,30(6):1168-1175.[张霞,孙伟超,师通,等.基于小波变换的图像条带噪声去除方法[J].遥感技术与应用,2015,30(6):1168-1175.]

[22]Zhang J,Zhao D B,Gao W.Group-based Sparse Representation for Image Restoration[J].IEEE Transaction on Image Processing,2014,23(8):3336-3351.

[23]Afonso M V,Bioucas-Dias J M,Figueiredo M A T.Fast Image Recovery Using Variable Splitting and Constrained Optimization[J].IEEE Transaction on Image Processing,2010,19(9):2345-2356.

[24]Peyré G.Toolbox Wavelets-A Toolbox for Multiscale Signal and Image Processing[EB/OL].http://www.ceremade.dauphine.fr/~peyre/matlab/wavelets/content.html,2008,2014-12.

[25]Goldstein T,Osher S.The Split Bregman Method for L1-regularized Problems[J].SIAM Journal on Imaging Sciences,2009,2(2):323-343.

[1] 秦振涛,杨茹,张靖,杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215.
[2] 张宝华,周文涛,吕晓琪. 基于稀疏分解和改进MRF模型的SAR海冰图像分割方法[J]. 遥感技术与应用, 2017, 32(4): 709-713.
[3] 张霞,戚文超,孙伟超. 基于数学形态滤波的植被光谱去噪方法研究[J]. 遥感技术与应用, 2016, 31(5): 846-854.
[4] 王俊,秦其明,叶昕,王建华,秦雪彬,杨绣丞. 高分辨率光学遥感图像建筑物提取研究进展[J]. 遥感技术与应用, 2016, 31(4): 653-662.
[5] 赵永光,李传荣,马灵玲,唐伶俐,王宁. 一种遥感图像太阳—观测几何归一化方法[J]. 遥感技术与应用, 2016, 31(2): 260-266.
[6] 肖新耀,许宁,尤红建. 一种基于à trous小波和联合稀疏表示的遥感图像融合方法[J]. 遥感技术与应用, 2015, 30(5): 1021-1026.
[7] 苏腾飞,李洪玉. 一种两阶段区域生长的遥感图像分割算法[J]. 遥感技术与应用, 2015, 30(3): 476-485.
[8] 侯鹏洋,季艳,高峰,胡蕾. 一种基于SIFT特征的快速逐层遥感图像配准方法[J]. 遥感技术与应用, 2014, 29(5): 873-877.
[9] 袁宗泽,孙浩,计科峰,邹焕新. 基于Fisher字典学习稀疏表示的高光谱图像分类[J]. 遥感技术与应用, 2014, 29(4): 646-652.
[10] 万智萍. 结合方向小波的多光谱与全色遥感图像融合算法[J]. 遥感技术与应用, 2014, 29(4): 660-668.
[11] 李青松,覃锡忠,贾振红,杨杰,胡英杰. 基于非下采样Shearlet和几何结构的遥感图像无监督变化检测[J]. 遥感技术与应用, 2014, 29(3): 482-488.
[12] 姜澒月,周坚华. 遥感图像薄云雾的梯度改正[J]. 遥感技术与应用, 2013, 28(4): 640-646.
[13] 欧阳能钧,李伟彤,韦蔚,潘晴. 基于SIFT与Contourlet变换的高分辨遥感图像配准[J]. 遥感技术与应用, 2013, 28(1): 58-64.
[14] 骆仁波,皮佑国,廖文志. 超光谱遥感图像有监督LPP特征提取研究[J]. 遥感技术与应用, 2012, 27(6): 850-856.
[15] 丁胜锋,孙劲光,陈东莉,姜晓林. 基于模糊双支持向量机的遥感图像分类研究[J]. 遥感技术与应用, 2012, 27(3): 353-358.