Please wait a minute...
img

官方微信

遥感技术与应用  2017, Vol. 32 Issue (5): 931-937    DOI: 10.11873/j.issn.1004-0323.2017.5.0931
遥感应用     
基于光谱、空间和形态特征的面向对象滑坡识别
林齐根1,2,邹振华1,祝瑛琦1,2,王瑛1,2
(1.北京师范大学环境演变与自然灾害教育部重点实验室,北京 100875;
2.民政部—教育部减灾与应急管理研究院,北京 100875)
Object-oriented Detection of Landslides based on the Spectral,Spatial and Morphometric Properties of Landslides
Lin Qigen1,2,Zou Zhenhua1,Zhu Yingqi1,2,Wang Ying1,2
(1.Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education,
Beijing Normal University,Beijing 100875,China;
2.Academy of Disaster Reduction and Emergency Management,
Beijing Normal University,Beijing 100875,China)
 全文: PDF(9331 KB)  
摘要:
地震经常诱发数量众多,覆盖范围广的滑坡并造成极大危害,因此,需要对大范围的滑坡灾害进行快速评估。随着遥感影像分辨率的提高,面向对象分类方法在这方面的应用比传统的目视解译和基于像素的方法更具优势。但是,目前基于面向对象方法的滑坡识别研究还相对较少,而且通常针对小范围的研究区。基于SPOT5 2.5 m多光谱影像,提出一种综合光谱、空间、地形和形态特征的面向对象滑坡自动识别方法,并应用于较大范围研究区。结果表明:面向对象滑坡自动识别方法能将研究区内95%的滑坡识别出来,综合考虑滑坡的过度提取与遗漏提取情况,滑坡提取质量为74.04%,效果较好,能够快速、有效地识别大范围的滑坡。该方法可以应用于对地震或强降雨引起的大范围滑坡灾害进行快速评估,为灾后应急救援和恢复重建工作提供参考。
关键词: 面向对象遥感影像滑坡识别规则集    
Abstract: Earthquakes in mountain area often induce hundreds of thousands of landslides resulting in destructive casualties and economic damage.It is urgent needed to rapidly detect the extent areas of the landslides.With the advent of very high resolution satellite remote sensing,the application of the object\|oriented classification method in this area have significant advantage comparing to those of visual interpretation and pixel\|based methods.However,the study of object\|oriented landslide detection is relatively few,and the study usually has a small study area.The method of object\|oriented rapid identification of landslides based on the spectral,spatial and morphometric properties of landslides and a 2.5m SPOT5 multi\|spectral image is proposed in this paper and is applied in a relatively large study area.The normalized difference vegetation index (NDVI) threshold was set to remove vegetation objects and obtain landslide candidates.Then,the spectral characteristics,texture,terrain features and context of the image were used to build indicators to gradually separate the landslide from false positives.The small scale chessboard segmentation was conducted to further eliminate vegetation objects and get the landslide objects.The object\|oriented detection results show that the adopted method can recognize about 95% of the landslides in the study area.When considering the landslide excessive detection and omissions,the landslide detection quality percentage of the proposed method is 74.04%.Hence,the method proposed in the article can help to rapid assess landslide disasters caused by earthquakes or heavy rainfalls,providing a reference for post\|disaster emergency relief and reconstruction work.
Key words: Object-oriented    Remote sensing image    Landslide    Identify    Rules
收稿日期: 2016-07-26 出版日期: 2017-11-02
:  TP 753  
基金资助: “十二五”科技支撑计划项目(2012BAK10B03),国家自然科学基金项目(41271544)


作者简介: 林齐根(1991-),男,广东汕头人,博士研究生,主要从事滑坡灾害风险评估模型研究。Email:linqigen@mail.bnu.edu.cn。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
林齐根
邹振华
祝瑛琦
王瑛

引用本文:

林齐根,邹振华,祝瑛琦,王瑛. 基于光谱、空间和形态特征的面向对象滑坡识别[J]. 遥感技术与应用, 2017, 32(5): 931-937.

Lin Qigen,Zou Zhenhua,Zhu Yingqi,Wang Ying. Object-oriented Detection of Landslides based on the Spectral,Spatial and Morphometric Properties of Landslides. Remote Sensing Technology and Application, 2017, 32(5): 931-937.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2017.5.0931        http://www.rsta.ac.cn/CN/Y2017/V32/I5/931

[1] 梁继,褚楠,郑敦勇,彭焕华,张静. 面向道路边坡监测的高分二号应用研究[J]. 遥感技术与应用, 2018, 33(4): 638-645.
[2] 王宁,陈方,于博. 基于形态学开运算的面向对象滑坡提取方法研究[J]. 遥感技术与应用, 2018, 33(3): 520-529.
[3] 程博,刘岳明,刘旭楠,王桂周,马肖肖. 基于多源特征融合的高分辨率遥感图像近海养殖区提取方法研究[J]. 遥感技术与应用, 2018, 33(2): 296-304.
[4] 闫鹏飞,明冬萍. 尺度自适应的高分辨率遥感影像分水岭分割方法[J]. 遥感技术与应用, 2018, 33(2): 321-330.
[5] 周子勇. 运用经验模态分解和压缩感知方法进行遥感影像超分辨率重建[J]. 遥感技术与应用, 2018, 33(1): 96-102.
[6] 周为峰,曹利,李小恕,程田飞. 沿海牡蛎养殖的WorldView-2影像融合方法评价[J]. 遥感技术与应用, 2018, 33(1): 103-109.
[7] 江东,陈帅,丁方宇,付晶莹,郝蒙蒙. 基于面向对象的遥感影像分类研究——以河北省柏乡县为例[J]. 遥感技术与应用, 2018, 33(1): 143-150.
[8] 彭令,徐素宁,梅军军,李文娟. 资源三号卫星在汶川震区滑坡快速识别中的应用方法研究[J]. 遥感技术与应用, 2018, 33(1): 185-192.
[9] 何海清,庞燕,陈晓勇. 面向遥感影像场景的深度卷积神经网络递归识别模型[J]. 遥感技术与应用, 2017, 32(6): 1078-1082.
[10] 田峰,陈冬花,黄新利,李虎,姚国慧. 基于形态学阴影指数的高分二号影像建筑物高度估计#br#[J]. 遥感技术与应用, 2017, 32(5): 844-850.
[11] 包刚,包玉龙,阿拉腾图娅,包玉海,覃志豪,王牧兰,周义. 1982~2011年蒙古高原植被物候时空动态变化[J]. 遥感技术与应用, 2017, 32(5): 866-874.
[12] 李恒凯,欧彬,刘雨婷,邱玉宝. 基于混合像元分解的高光谱影像柑橘识别方法[J]. 遥感技术与应用, 2017, 32(4): 743-750.
[13] 吕利利,颉耀文,董龙龙. 基于不同地形校正模型的影像反射率对比分析[J]. 遥感技术与应用, 2017, 32(4): 751-759.
[14] 姬忠林,张月平,李乔玄,刘绍贵,李淑娟,任红艳. 基于GF-1影像的冬小麦和油菜种植信息提取[J]. 遥感技术与应用, 2017, 32(4): 760-765.
[15] 王苏芸,孙中昶,郭华东,申维. 基于面向对象的东营市城乡建设用地信息提取[J]. 遥感技术与应用, 2017, 32(4): 780-786.