Please wait a minute...
img

官方微信

遥感技术与应用  2017, Vol. 32 Issue (5): 948-957    DOI: 10.11873/j.issn.1004-0323.2017.5.0948
遥感应用     
物候和波谱—位置分析在城镇绿化植物群分类中的应用
秦俊1,2,冷寒冰3,赵广琦3,景军3,周坚华4
(1.上海辰山植物园,上海 201602;2.上海植物园,上海 200231
3.上海城市植物资源开发应用工程技术研究中心,上海植物园,上海 200231
4.华东师范大学地理科学学院,上海 200241)
Applications of Phenology Analysis and Spectrum-Location Analysis in the Classification of Urban Vegetation Population
Qin Jun1,2,Leng Hanbing2,Zhao Guangqi2,Jing Jun2,Zhou Jianhua3
(1.Shanghai Chenshan Botanical Garden,Shanghai 201602,China;
2.Engineering Center,Shanghai Botanical Garden,Shanghai 201231,China;
3.College of Geographic Science,East China Normal University,Shanghai 200241,China)
 全文: PDF(11943 KB)  
摘要:
遥感图像植物群分类已被证明是植物群分布自动制图快速有效的方法。然而,场景噪声和植物群之间光谱可分性差等形成的负面影响,使传统的分类方法无法满足必要的精度要求。为了解决这个问题,提出了一种称为SLPA的遥感图像植物群分类方法。它由波谱—位置联合分析(S\|L分析)和植物物候遥感分析(PA)两部分组成。通过向特征空间添加密度描述符以及在特征空间叠加冬、夏季图像特征数据,可以将这两类分析嵌入分类过程。这种改进增加了可用描述符的数量,使分类特征空间足够丰富,以适应复杂分类;同时又降低了分类不确定性,使分类精度获得显著改善。精度测试显示,增加S\|L分析和物候分析,将使植物群分类的全局精度分别平均提高15.0%和29.3%。另外,由于采用二值邻域均值替代灰度邻域密度,使得加入S\|L分析几乎不引起运算复杂性增大。Matlab测试结果显示,SLPA在城镇植物群遥感自动分类方面具有鲁棒和普适性。
关键词: 城镇植物群图像分类物候遥感波谱&mdash位置分析    
Abstract:
Classification from remote sensing imagery has been proved to be a quick and effective method for automatic mapping of vegetation population.However,the interference from background noises and the weak spectral separability between vegetation populations have a negative impact on the identification of urban vegetation populations from remote sensing images.This make the classification accuracy unsatisfied as using conventional classification methods.In order to solve this problem,a new method of classification from remote sensing imagery,named as SLPA,is proposed.SLPA consists of two parts:Spectrum\|Location joint analysis (abbreviated as S\|L analysis or SL) and Phenology remote sensing Analysis (PA).By adding density descriptors to a feature space and by combining the descriptors derived from winter and summer images of a scene into the same feature space,these two kinds of analyses can be embedded into the classification process.The embedding increases the number of available independent descriptors therefore making the feature space rich enough to adapt to such a complex classification;meanwhile,uncertainty in the classification can be reduced and the classification accuracy can be improved significantly.The data from accuracy assessments show that with the S\|L analysis and the phenology analysis,the overall accuracies of the classification for urban vegetation population will increase by 15% and 29.3% respectively.In addition,the S\|L analysis almost does not increase the computational complexity because a frequently used computation for the density of gray elements is replaced with a calculation of binary mean value,a much more time saving operation.Experiments indicate that SLPA is good at robustness and universality in the classification of urban vegetation population.
Key words: Urban vegetation population;Image classification;Phenology analysis;Spectrum\    location analysis
收稿日期: 2016-09-30 出版日期: 2017-11-02
:  TP751  
基金资助: 十二五国家科技支撑计划项目“绿地低碳效益综合提升和评价技术研究”(2013BAJ02B01-4)资助。


作者简介: 秦俊(1968-),女,桂林人,教授级高工,主要从事城市生态学研究。Email:qinjun03@126.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
秦俊
冷寒冰
赵广琦
景军
周坚华

引用本文:

秦俊,冷寒冰,赵广琦,景军,周坚华. 物候和波谱—位置分析在城镇绿化植物群分类中的应用[J]. 遥感技术与应用, 2017, 32(5): 948-957.

Qin Jun,Leng Hanbing,Zhao Guangqi,Jing Jun,Zhou Jianhua. Applications of Phenology Analysis and Spectrum-Location Analysis in the Classification of Urban Vegetation Population. Remote Sensing Technology and Application, 2017, 32(5): 948-957.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2017.5.0948        http://www.rsta.ac.cn/CN/Y2017/V32/I5/948

[1] 陈伟民,张凌,宋冬梅,王斌,丁亚雄,许明明,崔建勇. 基于AdaBoost改进随机森林的高光谱图像地物分类方法研究[J]. 遥感技术与应用, 2018, 33(4): 612-620.
[2] 谢军飞,周坚华. 城镇绿化植物群软分类[J]. 遥感技术与应用, 2018, 33(4): 721-730.
[3] 苏红军,赵波. 基于共形几何代数的高光谱遥感波段选择方法[J]. 遥感技术与应用, 2017, 32(3): 539-545.
[4] 袁春琦,徐佳,程圆娥,陈媛媛,许康. 基于协同训练与集成学习的极化SAR图像半监督分类[J]. 遥感技术与应用, 2017, 32(2): 380-385.
[5] 李茜楠,苏红军. 基于萤火虫算法的高光谱遥感波段选择方法[J]. 遥感技术与应用, 2014, 29(5): 761-770.
[6] 袁宗泽,孙浩,计科峰,邹焕新. 基于Fisher字典学习稀疏表示的高光谱图像分类[J]. 遥感技术与应用, 2014, 29(4): 646-652.
[7] 李光辉,王 成,郑照军,习晓环,岳彩荣. 机载高光谱数据冰川分类方法研究——以“中习一号”冰川为例[J]. 遥感技术与应用, 2013, 28(5): 766-772.
[8] 狄文羽,何明一,梅少辉. 基于快速非负矩阵分解和RBF网络的高光谱图像分类算法[J]. 遥感技术与应用, 2009, 24(3): 385-390.
[9] 徐丽华,岳文泽,李先华,梅安新,章皖秋. 基于二维小波变换的遥感分类研究[J]. 遥感技术与应用, 2003, 18(5): 317-321.
[10] 赵书河 张明金. 带竞争学习机制的反向传播模型及在遥感图像分类中的实验[J]. 遥感技术与应用, 1995, 10(4): 61-64.