Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (1): 125-134    DOI: 10.11873/j.issn.1004-0323.2019.1.0125
模型与反演     
亚洲区域AMSR2与SMOS土壤水分产品对比研究
李瑞娟,李兆富,郝睿,张舒昱,潘剑君
(南京农业大学资源与环境科学学院,江苏 南京 210095)
A Regional-Scale Performance Evaluation of SMOS and AMSR2 Soil Moisture Products over Asia
Li Ruijuan,Li Zhaofu,Hao Rui,Zhang Shuyu,Pan Jianjun
(College of Resources and Environmental Sciences,Nanjing Agricultural University,Nanjing 210095,China)
 全文: PDF(13860 KB)  
摘要: 遥感反演土壤水分(SM)产品越来越多地应用于农业、气象、水文等研究,而微波土壤水分数据产品的区域适用性分析是其合理使用的必要前提。使用MERRA-2(Modern Era Retrospective-analysis for Research and Applications,Version 2)模拟土壤水分为参考数据,运用传统统计方法(原始数据相关性、距平相关性、偏差以及无偏均方根差)和TC(Triple-Collocation)不确定性误差模型分析的方法,对亚洲区域2012年7月~2016年7月两种被动微波土壤水分SMOS-L3-SM(Soil Moisture and Ocean Salinity,L3)和AMSR2-LPRM-SM(The Advanced Microwave Scanning Radiometer 2,Land Parameter Retrieval Model Product)进行对比评估。结果表明:①空间上SMOS-L3较AMSR2-LPRM数据与参考数据MERRA-2土壤水分的相关性较好,表现为SMOS-L3-SM具有较好的空间连续性,且在亚洲大多数地区有较小的无偏均方根差;②湿季条件下遥感土壤水分与参考值的相关性比干季条件下的相关性更好,且干季出现高纬地区(约>55°)缺失值较多的情况;③两遥感土壤水分的TC误差呈现相似的分布,区域TC平均误差两者均为0.076 m3/m3。总之,SMOS-L3-SM和AMSR2-LPRM-SM在空间相关性及TC误差评价方面都具有合理性,为遥感土壤水分在农业、气象、水文等方面的应用提供参考。
关键词: 土壤水分SMOS-L3-SMAMSR2-LPRM-SMMERRA-2亚洲    
Abstract:

Soil Moisture (SM)products derived from satellite missions have been widely applied in agriculture,meteorology,hydrology,and other fields.It is very necessary to assess the reliability of satellite soil moisture products over regional scale before using them.Two passive satellite soil moisture products,obtained from SMOS (the Soil Moisture Ocean Salinity;L3)and AMSR2 (the Advanced Microwave Scanning Radiometer 2;LPRM),were evaluated over Asia with reference to MERRA-2 (the Modern Era Retrospective-analysis data for Research and Applications,Version 2)simulated products.The evaluation was performed by adopting a classic statistical method (including Pearson correlation (R)for original SM data and anomalies,bias and unbiased root mean square root)and Triple Collocation (TC)approach based on the SMOS-L3 and AMSR-LPRM daily SM products during July 2012~July 2016.The results reveal that:(1)in space,the performance of SMOS-L3-SM is better than AMSR2-LPRM-SM both for the original SM data and anomalies.Because the SMOS-L3-SM performed consistent correlation over Asia and the smaller unbiased root mean squared difference (ubRMSD)of SMOS-L3-SM is found in most parts of Asia;(2)the correlation between satellite and simulated SM is better in the wet season than in the dry season.Additionally there is a quite high probability of a lack of value in high latitude (about >55°)areas in the dry season to appear;(3)SMOS-L3-SM and AMSR2-LPRM-SM have relatively similar TC errors distribution with a mean error of 0.076 m3/m3 for both of them.Overall,both SMOS-L3-SM and AMSR2-LPRM-SM give reasonable results on correlation and TC error,thus providing an additional reference for application of soil moisture in agriculture,meteorology,hydrology and other studies.

Key words: Soil moisture;SMOS-L3-SM;AMSR2-LPRM-SM    MERRA-2    Asia
收稿日期: 2018-03-28 出版日期: 2019-04-02
ZTFLH:  TP75  
基金资助: 中央高校基本科研业务费项目“全球气候变化背景下基于多源遥感数据的地表关键参量反演研究”(KYZ201522),国家自然科学基金项目“太湖地区湖库水源地流域湿地景观格局多样性的水环境过程与功能响应机制”(41571171)。
作者简介: 李瑞娟(1991-),女,河南商丘人,硕士研究生,主要从事土壤水分遥感反演研究。E-mail:prolrj909@163.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李瑞娟, 李兆富, 郝睿, 张舒昱, 潘剑君. 亚洲区域AMSR2与SMOS土壤水分产品对比研究[J]. 遥感技术与应用, 2019, 34(1): 125-134.

Li Ruijuan, Li Zhaofu, Hao Rui, Zhang Shuyu, Pan Jianjun. A Regional-Scale Performance Evaluation of SMOS and AMSR2 Soil Moisture Products over Asia. Remote Sensing Technology and Application, 2019, 34(1): 125-134.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.1.0125        http://www.rsta.ac.cn/CN/Y2019/V34/I1/125

[1]Wang Q W,Gu Y F,Tuia D.Discriminative Multiple Kernel Learning for Hyperspectral Image Classification[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(7):1-16 [2]Pedro D.A Few Useful Things to Know About Machine Learning[J].Communications of the ACM,2012,55(10):78-87. [3]Kotsiantis S B,Zaharakis I D,Pintelas P E.Machine Learning:A Review of Classification and Combining Techniques[J].Artificial Intelligence Review,2006,26(3):159-190. [4]Corinna C,Vladimir V.Support-Vector Networks[C]∥ Proc.of the 25th Machine Leaning,1995,20(3):273-297. [5]Madan S,Pranjali C.A Review of Machine Learning Techniques Using Decision Tree and Support Vector Machine[A].International Conference on Computing Communication Control & Automation[C]∥Piscataway,N J,USA:IEEE,2017:1-7. [6]Zhu Q Y,Qin A K,Suganthan P N,et al.Evolutionary Extreme Learning Machine[J].Pattern Recognition,2005,38(10):1759-1763. [7]Huang G B,Zhu Q Y,Siew C K.Extreme Learning Machine:Theory and Applications[J].Neurocomputing.2006,70(1):489-501. [8]Dhandhalya J K,Parmar S K.Hyperspectral Image Classification Using Spatial Spectral Features and Machine Learning Approach[C]∥IEEE International Conference on Recent Trends In Electronics Piscataway,N J,USA,2017:1161-1165. [9]Chen C,Li W,Su H,et al.Spectral-spatial Classification of Hyperspectral Image based on Kernel Extreme Learning Machine[J].Remote Sensing,2014,6(6):5795-5814. [10]Roerdink J,Meijster A.The Watershed Transform:Definitions,Algorithms and Parallelization Strategies[J].Fundamenta Informaticae,2000,41(1,2):187-228. [11]Michailovich O,Rathi Y,Dolui S.Spatially Regularized Compressed Sensing for High Angular Resolution Diffusion Imaging[J].IEEE Transactions on Medical Imaging,2011,30(5):1100-1115. [12]Manjunath B S,Ma W Y.Texture Features for Browsing and Retrieval of Image Data[J].IEEE Trans Pami,1996,18(8):837-842. [13]Shao Liangshan,Ma Han,Wen Tingxin.Study on Classifier Ensemble Learning Model for Extreme Learning Machine[J].Computer Engineering and Applications,2016,52(13):121-125.[邵良杉,马寒,温廷新.极限学习机的分类器集成模型研究[J].计算机工程与应用,2016,52(13):121-125.] [14]Yi Xufeng,Wu Jian,Yu Gaohang.Parameter Selection of RBF Kernel Using Kernel Polarization by An Adaptive Gradient Method[J].Journal of Gannan Normal University,2015,36(6): 23-27.[易序峰,吴坚,喻高航.基于自适应梯度算法的SVM核极化参数选择方法[J].赣南师范学院学报,2015,36(6):23-27.] [15]Zhao Zhiyong,Li Yuanxiang,Yu Fei,et al.Improved Deep Learning Algorithm based on Extreme Learning Machine[J].Computer Engineering and Design,2015,36(4):1022-1026.[赵志勇,李元香,喻飞,等.基于极限学习的深度学习算法[J].计算机工程与设计,2015,36(4):1022-1026.] [16]Zhang Jing,Yao Shuke.The Application of the Data Mining To the Malware Detection[J].Computer Knowledge and Technology,2011,7(35):9048-9049.[张敬,姚书科.数据挖掘在恶意程序检测中的应用[J].电脑知识与技术,2011,7(35):9048-9049] [17]Wei Ao.Design of A Classifier based on the SVM Algorithm[J].Electronic Science and Technology,2015,28(4):23-26.[危傲.基于SVM算法的分类器设计[J].电子科技,2015,28(4):23-26.] [18]Wang S,Liu Q,Zhu E,et al,Hyperparameter Selection of One-class Support Vector Machine by Self-adaptive Data Shifting[J].Pattern Recognition,2018,74:198-211. [19]Qiu Yunfei,Li Zhiyi.An Improved Artificial Fish Swarm Algorithm and Its Application for SVM Parameter Optimization[J].Computer Engineering and Science,2018,40(11):2074-2079.[邱云飞,李智义.改进人工鱼群算法在SVM参数优化中的应用[J].计算机工程与科学,2018,40(11):2074-2079.] [20]Heras D B,Argüello F,Quesadabarriuso P.Exploring ELM-based Spatial-spectral Classification of Hyperspectral Images[J].International Journal of Remote Sensing,2014,35(2):401-423. [21]Gao Wenjie,Wang Jinliang,Liu Guangjie.Study on the Effect of Training Sample on Classification Accuracy of Remote Sensing Image[J].Yunnan Geographic Environment Research,2015,27(2):31-36.[高文杰,王金亮,刘广杰.训练样本对遥感影像分类精度影响研究[J].云南地理环境研究,2015,27(2):31-36.] [22]Fandino J L,Barriuso P Q,Heras D B,et al.Efficient ELM-based Techniques for the Classification of Hyperspectral Remote Sensing Images on Commodity Gpus[J].IEEE Journal of Selected Topics In Applied Earth Observations and Remote Sensing,2017,8(6):2884-2893. [23]Barriuso P Q,Arguello F,Heras D B.Spectral-Spatial Classification of Hyperspectral Images Using Wavelets and Extended Morphological Profiles[J].IEEE Journal of Selected Topics In Applied Earth Observations and Remote Sensing,2014,7(4):1177-1185. [24]Lu Siyuan,Lu Zhihai,Wang Shuihua,et al.Review of Extreme Learning Machine[J].Measurement & Control Technology,2018,37(10):3-9.[陆思源,陆志海,王水花,等.极限学习机综述[J].测控技术,2018,37(10):3-9.] [25]Huang G B,Ding X,Zhou H.Optimization Method based Extreme Learning Machine for Classification[J].Neurocomputing,2010,74(1-3):155-163. [26]Huang G B,Babri H A.Upper Bounds on the Number of Hidden Neurons in Feedforward Networks With Arbitrary Bounded Nonlinear Activation Functions[J].IEEE Trans Neural Netw,1998,9(1):224-229. [27]Yu Qiuyan,Zhao Ying,Sun Jijia,et al.Realization and Comparison of Typical Machine Learning Algorithms In Fatty Liver Classification Prediction Research[J].Journal of Mathematical Medicine,2019,32(1):1-3.[余秋燕,赵莹,孙继佳,等.典型机器学习算法在脂肪肝分类预测研究中的实现与比较[J].数理医药学杂志,2019,32(1):1-3.] [28]Cao Weichao,Li Ming,Liu Jiang,et al.Study on Evaluation of Land Cover Classification Data based on Moderate Resolution Imaging[J].Geomatics & Spatial Information Technology,2018,41(11):55-57,61.[曹伟超,李明,刘江,等.基于中分影像的不同时相地表覆盖分类数据精度评价[J].测绘与空间地理信息,2018,41(11):55-57,61.] [29]Wang Hao,Chen Yanhua,Li Yan.Kappa Analysis of Prescription Comment From Different Audit Directions[J].Practical Pharmacy and Clinical Remedies,2018,21(10):1200-1202.[汪浩,陈燕华,李燕.从不同审核方向进行处方点评的Kappa分析[J].实用药物与临床,2018,21(10):1200-1202.] [30]Cai L,Shi W,Miao Z,et al.Accuracy Assessment Measures for Object Extraction from Remote Sensing Images[J].Remote Sensing,2018,10(2):303.doi:10.3390/rs10020303.
[1] 白瑜,孟治国,赵凯. 像元尺度土壤水分监测网络及其对L波段土壤水分产品的初步验证结果[J]. 遥感技术与应用, 2018, 33(1): 78-87.
[2] 向怡衡,张明敏,张兰慧,贺缠生,王一博,白晓. 祁连山区不同植被类型上的SMOS遥感土壤水分产品质量评估[J]. 遥感技术与应用, 2017, 32(5): 835-843.
[3] 曹永攀,黄春林,陈玮婧,张莹. 联合同化MODIS地表温度与机载L波段微波亮度温度估计土壤水分[J]. 遥感技术与应用, 2017, 32(4): 606-614.
[4] 王增艳,王建,车涛. 机载L波段微波辐射计数据反演表层土壤水分研究[J]. 遥感技术与应用, 2017, 32(2): 185-194.
[5] 赵泽斌,晋 锐,田伟,亢健,苏阳. 基于SiB2模型的土壤水分降尺度指标的适用性研究[J]. 遥感技术与应用, 2017, 32(2): 195-205.
[6] 陆峥,柴琳娜,张涛,崔慧珍,李婉静. AMSR2土壤水分产品在黑河流域中上游的验证[J]. 遥感技术与应用, 2017, 32(2): 324-337.
[7] 张祥,陈报章,赵慧,汪磊. 基于时序Sentinel-1A数据的农田土壤水分变化检测分析[J]. 遥感技术与应用, 2017, 32(2): 338-345.
[8] 于小淇,邱玉宝,阮永俭,石利娟,拉巴卓玛. 高亚洲地区无云积雪遥感二值产品对比和精度验证分析[J]. 遥感技术与应用, 2017, 32(1): 37-48.
[9] 王定文,黄春林,顾娟. 干旱区地表L波段微波辐射特性分析穿透深度的影响[J]. 遥感技术与应用, 2016, 31(3): 580-589.
[10] 褚楠,黄春林,杜培军. 基于双EnKF的土壤水分与土壤属性参数同时估计[J]. 遥感技术与应用, 2016, 31(2): 214-220.
[11] 谢凯鑫,张婷婷,邵芸,柴勋. 基于Radarsat-2全极化数据的高原牧草覆盖地表土壤水分反演[J]. 遥感技术与应用, 2016, 31(1): 134-142.
[12] 胡蝶,郭铌,沙莎,王丽娟. Radarsat-2/SAR和MODIS数据联合反演黄土高原地区植被覆盖下土壤水分研究[J]. 遥感技术与应用, 2015, 30(5): 860-867.
[13] 董淑英,晋锐,亢健,李大治. ASAR GM后散时间序列数据估算黑河上游地表土壤水分[J]. 遥感技术与应用, 2015, 30(4): 667-676.
[14] 何文英,卞建春,陈洪滨. 星载雷达观测分析亚洲季风区对流层顶附近的对流活动[J]. 遥感技术与应用, 2014, 29(4): 594-599.
[15] 王秀君,陈健. 基于LST-EVI特征空间的土壤水分含量反演[J]. 遥感技术与应用, 2014, 29(1): 46-53.