Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (1): 153-162    DOI: 10.11873/j.issn.1004-0323.2020.1.0153
模型与反演     
FY-3C中分辨率成像光谱仪数据的窄波段地表反照率验证研究
赵春亮1,2(),许文波3,范锦龙1()
1. 国家卫星气象中心, 北京 100081
2. 中国农业科学院农业资源与农业区划研究所,北京 100081
3. 电子科技大学资源与环境学院, 四川 成都 611731
Validation of Narrow-band Surface Albedo Retrieved from FY-3C MERSI Satellite Data
Chunliang Zhao1,2(),Wenbo Xu3,Jinlong Fan1()
1. National Satellite Meteorological Center, Beijing 100081, China
2. Chinese Academy of Agricultural Sciences, Institute of Agricultural Resources and Regional Planning, Beijing 100081, China
3. University of Electronic Science and Technology of China, School of Resources and Environment, Chengdu 611731, China
 全文: PDF(14611 KB)   HTML
摘要:

地表反照率数据对地表能量平衡和全球变化研究具有重要意义。基于2014年FY-3C卫星250 m分辨率的反射率数据和角度数据,选取非洲及北美洲的4个区域作为研究区,采用RossThick-LiSparseR模型作为BRDF(Bidirectional Reflectance Distribution Function)核模型反演了地表窄波段反照率,得到250 m分辨率的4个窄波段黑空、白空反照率。将反演得到的FY-3C地表窄波反照率产品与MODIS反照率产品(MCD43A3)数据进行了交叉验证,结果表明:FY-3C窄波段反照率与对应MODIS窄波段反照率对比的均方根误差在0.01~0.04,平均偏差(MBIAS)为0.09,FY-3C窄波段反照率与对应的MODIS窄波段反照率在可见光波段、近红外波段有较好的一致性。本研究提升了国产风云极轨卫星的应用范围,可为FY-3C地表反照率业务化产品提供算法支撑。

关键词: 地表反照率FY?3CMERSIMODIS    
Abstract:

Surface albedo is one of the driving factors in surface radiant energy balance and surface-atmosphere interaction.It is widely used in surface energy balance, medium and long-term weather forecasting and global change research.This study aims to validate the surface albedo retrieved from FY-3C MERSI. This paper selected four regions in Africa and North America as study areas to validate the retrieved albedo from the reflectance data and angle data of FY-3C MERSI at 250 m resolution in 2014. The semi-empirical kernel-driven BRDF(bidirectional reflectance distribution function) model RossThick-LiSparseR and least squares fitting method were used to calculate the parameter of BRDF. Then four narrow-band black-sky albedos and four narrow-band white-sky albedos can be obtained by angle integration. Finally, the cross-validation of FY-3C surface narrow-band albedo products with MODIS albedo products (MCD43A3) was carried out. The results show that theRoot Mean Square Error(RMSE) between the FY-3C narrow-band albedo and the corresponding MODIS narrow-band albedo is in the range of 0.01 ~ 0.04, and the Mean Bias (MBIAS) is 0.09. FY-3C narrow-band albedo has good consistency with the corresponding MODIS narrow-band albedo in the visible and near-infrared bands. So, the methodologyof using the BRDF model to invert the surface albedo of FY-3C medium resolution imaging spectrometer data is feasible and reliable. The further improvement of the inversion accuracy of FY3C-MERSI surface albedo also depends on the improvement of basic data processing quality, including image geometric correction, calibration, and strict data quality control.

Key words: Surface Albedo    FY-3C    MERSI    MODIS
收稿日期: 2018-10-09 出版日期: 2020-04-01
ZTFLH:  TP75  
基金资助: 国家重点研发计划项目(2016YFA0600301)
通讯作者: 范锦龙     E-mail: zcluestc@163.com;fanjl@cma.gov.cn
作者简介: 赵春亮(1992—),男,山西应县人,博士研究生,主要从事植被定量遥感方面的研究。E?mail:zcluestc@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵春亮
许文波
范锦龙

引用本文:

赵春亮,许文波,范锦龙. FY-3C中分辨率成像光谱仪数据的窄波段地表反照率验证研究[J]. 遥感技术与应用, 2020, 35(1): 153-162.

Chunliang Zhao,Wenbo Xu,Jinlong Fan. Validation of Narrow-band Surface Albedo Retrieved from FY-3C MERSI Satellite Data. Remote Sensing Technology and Application, 2020, 35(1): 153-162.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.1.0153        http://www.rsta.ac.cn/CN/Y2020/V35/I1/153

区域 经度/° 纬度/°
BurkinaFaso Koumbia -6.14,-1.14 8.72,13.72
Ethiopia WestShewa 35.30,40.30 6.60,11.60
Tanzania Rungwe 31.68,36.68 -11.55,-6.55
USA Fresno -122.32,-117.32 34.28,39.28
表1  研究区域地理位置
图2  研究区FY-3C反射率影像(波段3,4,1合成)
通道序号

中心波长

/μm

光谱带宽

/μm

空间分辨率

/m

噪声等效反射率ρ/%

或噪声等效温差

动态范围

(最大反射率ρ、最大温度K)

1 0.470 0.05 250 0.45 100%
2 0.550 0.05 250 0.40 100%
3 0.650 0.05 250 0.40 100%
4 0.865 0.05 250 0.45 100%
表2  MERSI 250 m分辨率通道特性
图1  FY-3C MERSI角度数据分布
图3  研究区地表黑空与白空反照率(BSA为黑空,WSA为白空)
图4  FY-3C与MODIS光谱响应函数
地表反照率 研究区 TanzaniaRungwe BurkinaFasoKoumbia USAFresno EthiopiaWestShewa
BSA FY3C_band1-MODIS_band3 0.7381 0.5294 0.8854 0.8709
FY3C_band2-MODIS_band4 0.8394 0.7398 0.9362 0.8732
FY3C_band3-MODIS_band1 0.8909 0.8776 0.9402 0.9092
FY3C_band4-MODIS_band2 0.9320 0.8944 0.8801 0.9004
WSA FY3C_band1-MODIS_band3 0.6271 0.5055 0.8543 0.8388
FY3C_band2-MODIS_band4 0.7460 0.7350 0.8961 0.8295
FY3C_band3-MODIS_band1 0.8345 0.8690 0.8942 0.8770
FY3C_band4-MODIS_band2 0.9074 0.8592 0.7588 0.8682
表3  研究区验证点相关性统计
地表反照率 研究区 TanzaniaRungwe BurkinaFasoKoumbia USAFresno EthiopiaWestShewa
BSA FY3C_band1-MODIS_band3 0.081 0.014 0.033 0.055
FY3C_band2-MODIS_band4 0.018 0.007 0.041 0.016
FY3C_band3-MODIS_band1 0.009 0.023 0.032 0.008
FY3C_band4-MODIS_band2 0.005 0.103 0.023 0.018
WSA FY3C_band1-MODIS_band3 0.098 0.080 0.034 0.080
FY3C_band2-MODIS_band4 0.021 0.007 0.038 0.020
FY3C_band3-MODIS_band1 0.011 0.005 0.027 0.011
FY3C_band4-MODIS_band2 0.008 0.029 0.027 0.027
表4  研究区验证的均方根误差统计
地表反照率 研究区 TanzaniaRungwe BurkinaFasoKoumbia USAFresno EthiopiaWestShewa
BSA FY3C_band1-MODIS_band3 0.009 0.006 0.249 0.008
FY3C_band2-MODIS_band4 0.004 0.185 0.249 0.005
FY3C_band3-MODIS_band1 0.005 0.243 0.243 0.025
FY3C_band4-MODIS_band2 0.048 0.245 0.212 0.043
WSA FY3C_band1-MODIS_band3 0.009 0.009 0.247 0.008
FY3C_band2-MODIS_band4 0.004 0.025 0.243 0.005
FY3C_band3-MODIS_band1 0.006 0.097 0.204 0.031
FY3C_band4-MODIS_band2 0.095 0.234 0.134 0.049
表5  研究区验证点BIAS统计
图5  Rungwe_Tanzania研究区黑空、白空反照率散点图
图6  Koumbia_BurkinaFaso研究区黑空、白空反照率散点图
图7  Fresno_USA_MODIS研究区黑空、白空反照率散点图
图8  WestShewa_Ethiopia研究区黑空、白空反照率散点图
1 Dickinson R E .Land Processes in Climate Models[J].Remote Sensing of Environment,1995,51(1):27-38.
2 Schaaf C , Wang Z .MCD 43A1 MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global-500 m V006[EB/OL].,2015.
3 European Space Agency .MERIS Product Handbook[EB/OL].,2011.
4 ADEOS .Advanced Earth Observing Satellite-II-Reference Handbook[EB/OL].,2006.
5 Sánchez-Zapero J .Global 10-daily SPOT-VEGETATION Bi-hemisphericalAlbedo(Continents) Product User Manual[EB/OL].,2017.
6 Liang Shunling , Zhang Xiaotong , Xiao Zhiqiang ,et al .Global and Surface Satellite(GLASS) Products: Algorithm, Verification and Analysis[M].Beijing:Higher Education Press,2014:33-72.梁顺林,张晓通,肖志强, 等 .全球陆表特征参量(GLASS)产品:算法、验证与分析[M] .北京:高等教育出版社,2014:33-72.
7 Qu Y , Liu Q , Liang S ,et al .Direct-estimation Algorithm for Mapping Daily Land-surface Broadband Albedo from MODIS Data[J].IEEE Transactions on Geoscience and Remote Sensing,2013,52(2):907-919.
8 Wang Fei .Preliminary Study on Retrieving Surface Albedo with FY-2D Data [D].Nanjing:Nanjing University of Information Science & Technology,2013.王飞.应用FY-2D资料反演地表反照率的初步研究[D] .南京:南京信息工程大学,2013.
9 Zhang Hu , Jiao Ziti , Li Xiaowen ,et al .A Priori Knowledge Application in the Retrieval of Surface Albedo Using HJ-1 CCD Data[J].Journal of Remote Sensing,2013,17(2):295-305.张虎,焦子锑,李小文, 等 .先验知识估算HJ-1CCD数据地表反照率[J].遥感学报,2013,17(2):295-305.
10 Fan Xianlei , Yan Hongbo , Qu Ying .Comparison and Validation of the Methods for Estimating Surface Albedo from HJ-1 A/B CCD data[J].Remote Sensing for Land & Resources,2019,31(3):123-131.樊宪磊,阎宏波,瞿瑛.基于HJ-1A/B CCD地表反照率估算方法比较与验证[J].国土资源遥感,2019,31(3):123-131.
11 Yan Hongbo .Remote Sensing Estimation Method of Surface Albedo from FY-3C MERSI Data[D] .Jilin:Northeast Normal University,2019.阎宏波. 基于FY-3C MERSI数据的地表反照率遥感估算方法研究 [D] .吉林:东北师范大学,2019.
12 Sun Yuejun , Wang Zihao , Qin Qiming ,et al .Retrieval of Surface Albedo based on GF-4 Geostationary Satellite Image Data[J].Journal of Remoting Sensing,2018,22(2):220-233.孙越君,汪子豪,秦其明, 等 .高分四号静止卫星数据的地表反照率反演[J].遥感学报,2018,22(2):220-233.
13 Yang Jun , Dong Chaohua , Lu Naimeng ,et al .FY-3A: The New Generation Polar-orbiting Meteorological Satellite of China[J].Acta Meteorologica Sinica,2009,67(4):501-509.杨军,董超华,卢乃锰, 等 .中国新一代极轨气象卫星—风云三号[J].气象学报,2009,67(4):501-509.
14 Zhang Peng , Yang Hu , Qiu Hong ,et al .Quantitative Remote Sensing from the Current Fengyun 3 Satellites[J].Advances in Meteorological Science and Technology,2012,2(4):6-11.张鹏,杨虎,邱红, 等 .风云三号卫星的定量遥感应用能力[J].气象科技进展,2012,2(4):6-11.
15 Lu Naimeng , Dong Chaohua , Yang Zhongdong ,et al .Ground Segment of the New General of Fengyun Popoar Orbit Meteorological Satellite (FY-3) and Its Data Application[J].Engineering Science,2012(9):10-19.卢乃锰,董超华,杨忠东, 等 .我国新一代极轨气象卫星(风云三号)工程地面应用系统[J].中国工程科学,2012(9):10-19.
16 Zhu Aijun , Hu Xiuqing , Lin Manyun ,et al .Global Data Acquisition Methods and Data Distribution for FY-3D Meteorological Satellite[J].Journal of Marine Meteorology,2018(3):1-10.朱爱军,胡秀清,林曼筠, 等 .风云三号D气象卫星全球数据获取方法及数据分发[J].海洋气象学报,2018(3):1-10.
17 Hu Xiuqing , Wu Ronghua .National Satellite Meteorological Centre. FY-3C Medium Resolution Spectrum Imager L1 Data[EB/OL].,2013.胡秀清,
17 吴荣华 .FY-3C 中分辨率光谱成像仪L1数据[EB/OL].,2013.
18 Yang Jun , Dong Chaohua ,et al .New Generation FengYun Polar-orbiting Meteorological Satellite Business Product and Application[M].Beijing:Science Press,2011:56-57. 杨军,董超华, 等 .新一代风云极轨气象卫星业务产品及应用[M].北京:科学出版社,2011:56-57.
19 Fan Jinglong , Zhang Yeping , Li Changbao ,et al .Systematic Analysis of Geometric Performance of Fengyun-3C MERSI Satellite Data Using Image Chip Matching Method[J].Remote Sensing Technology and Application,2018,33(4) :621-627.范锦龙,张晔萍,李昌宝, 等 .风云卫星中分辨率遥感数据几何定位误差分析[J].遥感技术与应用,2018,33(4):621-627.
20 Wen Jianguang , Liu Qiang , Xiao Qing ,et al .Remote Sensing Modeling of Surface Bidirectional Reflectance Characteristics and Retrieval of Albedo[M].Beijing:Science Press,2015:39-40.闻建光,刘强,肖青, 等 .陆表二向反射特性遥感建模及反照率反演[M].北京:科学出版社,2015:39-40
21 Roujean J L , Leroy M , Deschamps P Y .A Bidirectional Reflectance Model of the Earth's Surface for the Correction of Remote Sensing Data[J].Journal of Geophysical Research Atmospheres,1992,97(D18):20455-20468.
22 Lucht W , Schaaf C B , Strahler A H .An Algorithm for the Retrieval of Albedo from Space Using Semiempirical BRDF Models[J].IEEE Transactions on Geoscience & Remote Sensing,2002,38(2):977-998.
23 Wu Hongyi , Tong Ling , Chen Yunping .Evaluation of MODIS Shortwave Albedo Products over ChinaFLUX Sites[J].Remote Sensing Technology and Application,2012,27(5):735-739.吴宏伊, 童玲, 陈云坪.基于中国通量网的MODIS短波反照率验证与分析[J].遥感技术与应用,2012,27(5):735-739.
24 Schaaf C B , Gao F , Strahler A H ,et al .First Operational BRDF,Albedo Nadir Reflectance Products from MODIS[J].Remote Sensing of Environment,2002,83(1):135-148.
25 Lucht W , Lewis P .Theoretical Noise Sensitivity of BRDF and Albedo Retrieval from the EOS-MODIS and MISR Sensors with Respect to Angular Sampling[J].International Journal of Remote Sensing,2000,21(1):81-98.
[1] 郑贵洲,熊良超,廖艳雯,王红平. 利用MODIS数据反演南海南部海表温度及时空变化分析[J]. 遥感技术与应用, 2020, 35(1): 132-140.
[2] 王一帆,徐涵秋. 利用MODIS EVI时间序列数据分析福建省植被变化(2000~2017年)[J]. 遥感技术与应用, 2020, 35(1): 245-254.
[3] 徐卫星,薛华柱,靳华安,李爱农. 融合遥感先验信息的叶面积指数反演[J]. 遥感技术与应用, 2019, 34(6): 1235-1244.
[4] 冯艾琳,武晋雯,孟莹,姜鹏,董巍,张璇,方缘,刘斌. 基于MODIS GPP数据产品的辽宁省碳源/汇空间格局分布研究[J]. 遥感技术与应用, 2019, 34(4): 857-864.
[5] 冯婵莹, 汪子豪, 郑成洋. 基于分层线性回归的MODIS反照率产品降尺度方法研究[J]. 遥感技术与应用, 2019, 34(3): 602-611.
[6] 王莹莹, 袁金国, 张莹, 吴朝阳. 中国温带地区植被物候期时空变化特征及对总初级生产力的影响[J]. 遥感技术与应用, 2019, 34(2): 377-388.
[7] 刘亲亲, 崔耀平, 刘素洁, 李楠. 中国不同土地利用类型分光辐射地表反照率研究[J]. 遥感技术与应用, 2019, 34(1): 46-56.
[8] 尹思阳, 吴文瑾, 李新武. 基于遥感和气象数据的东南亚森林动态变化分析[J]. 遥感技术与应用, 2019, 34(1): 166-175.
[9] 赵宏宇, 郝晓华, 郑照军, 王建, 李弘毅, 黄广辉, 邵东航, 王轩, 高扬, 雷华锦. 基于FY-3D/MERSI-Ⅱ的积雪面积比例提取算法[J]. 遥感技术与应用, 2018, 33(6): 1004-1016.
[10] 金点点, 宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[11] 冯姣姣, 王维真, 李净, 刘雯雯. 基于BP神经网络的华东地区太阳辐射模拟及时空变化分析[J]. 遥感技术与应用, 2018, 33(5): 881-889.
[12] 汪航,师茁. 基于MODIS时间序列数据的春尺蠖虫害遥感监测方法研究—以新疆巴楚胡杨为例[J]. 遥感技术与应用, 2018, 33(4): 686-695.
[13] 拉巴卓玛,次珍. 2002~2015年西藏雅鲁藏布江流域积雪变化及影响因子分析研究[J]. 遥感技术与应用, 2018, 33(3): 508-519.
[14] 单天婵,王长林. 基于显著性增强的过火区域提取研究[J]. 遥感技术与应用, 2018, 33(3): 536-544.
[15] 张帅,师春香,梁晓,贾炳浩,吴捷. 风云三号积雪覆盖产品评估[J]. 遥感技术与应用, 2018, 33(1): 35-46.