Please wait a minute...
img

官方微信

遥感技术与应用  2020, Vol. 35 Issue (1): 194-201    DOI: 10.11873/j.issn.1004-0323.2020.1.0194
数据与图像处理     
先验终端像元库支持下的GF-4多光谱影像自动云检测
束美艳1,2,3,4(),顾晓鹤2,3,4,孙林1(),朱金山1,陈婷婷1,王凯1,王权1,杨贵军1,2,3,4
1. 山东科技大学测绘科学与工程学院 山东 青岛 266590
2. 农业部农业遥感机理与定量遥感重点实验室,北京农业信息技术研究中心,北京 100097
3. 国家农业信息化工程技术研究中心,北京 100097
4. 北京市农业物联网工程技术研究中心,北京 100097
Automatic Cloud Detection of GF4 Multispectral Imagery Supported by the Priori Terminal Pixel Library
Meiyan Shu1,2,3,4(),Xiaohe Gu2,3,4,Lin Sun1(),Jinshan Zhu1,Tingting Chen1,Kai Wang1,Quan Wang1,Guijun Yang1,2,3,4
1. College of Surveying Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China
3. National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
4. Beijing Engineering Research Center for Agriculture Internet of Things, Beijing 100097, China
 全文: PDF(2816 KB)   HTML
摘要:

高分四号卫星是我国第一颗地球同步轨道遥感卫星,以其高频、宽幅的特点,可为我国农业、林业、减灾、气象、环保和水利等应用提供快速、稳定的光学遥感影像,高效的影像自动云检测有助于进一步提高高分四号影像的利用效率。CDAG(Cloud Detection Algorithm-Generating)是一种基于像元组分光谱分析的自动云检测算法,能有效降低混合像元、复杂表面结构和大气等因素的影响。为了探索CDAG算法对于高分4号多光谱影像(GF4-PMS)的云检测应用能力,首先,从高光谱影像(AVIRIS)上选取不同的云类型和各种地表覆盖类型,建立云像元库和地物像元库;其次,基于高光谱像元库和GF4-PMS传感器光谱响应函数模拟出多光谱影像像元库;然后,根据碎云、薄云、厚云及非云像元的光谱差异性分析,将GF4-PMS影像的待检测像元与终端像元进行相似概率分析,实现基于最佳阈值自动迭代的GF4-PMS影像云检测;最后,从云像元正确率、晴空像元正确率、误判率、漏判率等多个指标进行云检测精度验证。结果表明:AVIRIS影像可以有效提取适用于GF4-PMS影像云检测的终端像元库,基于CDAG算法能较好地识别GF4-PMS影像上各种类型的云,对于不同时相、不同下垫面的碎云、薄云、厚云的检测精度可达90%以上。因此,基于先验终端像元库的云检测法对于提升GF4-PMS影像的利用效率具有较好的应用价值。

关键词: CDAG算法GF4-PMS云检测像元库数据模拟    
Abstract:

The GaoFen4 (GF4) satellite is China’s first geo-synchronous orbit remote sensing satellite. With the advantages of high frequency and wide width, it can provide fast and stable optical remote sensing images for agricultural, forestry, disaster reduction, meteorology, environmental protection, water conservancy and other applications in China. Efficient image automatic cloud detection helps to further improve the utilization efficiency of GaoFen4 images. CDAG(Cloud Detection Algorihtm-Generating)Cloud detection is an automatic cloud detection algorithm based on spectral analysis of pixel components, which can effectively reduce the influence of mixed pixels, complex surface structure and atmosphere. This paper aims to explore the application of CDAG algorithm in cloud detection of GaoFen4 multispectral imagery (GF4-PMS). Firstly, different cloud types and surface cover types were selected from hyperspectral images (AVIRIS) to establish cloud pixel library and clear sky pixel library. Next, the pixel library of multispectral images was simulated based on Hyperspectral pixel library and spectral response function of GF4-PMS sensor. Then, according to the spectral difference analysis of broken cloud, thin cloud, thick cloud and non-cloud pixel, the similarity probability analysis was performed on the to-be-detected pixel of the GF4-PMS image and the terminal pixel, and the GF4-PMS image cloud detection based on the optimal threshold automatic iteration was realized. Finally, cloud detection accuracy verification was carried out from multiple indicators such as cloud pixel correct rate, clear sky pixel correct rate, false positive rate and missed rate. The results show that AVIRIS images can effectively extract terminal pixel libraries for GF4-PMS image cloud detection. Clouds of Various types on GF4-PMS images can be better identified based on the CDAG algorithm. The accuracy of detection results for broken clouds, thin clouds and thick clouds with different time phases and different underlying surfaces can reach more than 90%. Therefore, the cloud detection method based on the priori terminal pixel library has a good application value for improving the utilization efficiency of GF4-PMS images.

Key words: CDAG algorithm    GF4-PMS    Cloud detection    Pixel library    Data simulation
收稿日期: 2018-11-01 出版日期: 2020-04-01
ZTFLH:  TP701  
基金资助: 国家自然科学基金项目(41571323);山东省自然科学基金项目(ZR201702210379);北京市自然科学基金项目(6172011);北京市农林科学院创新能力建设专项(KJCX20170705)
通讯作者: 孙林     E-mail: 2448858578@qq.com;sunlin6@126.com
作者简介: 束美艳(1993-),女,河南周口人,硕士研究生,主要从事定量遥感方面的研究。E?mail:2448858578@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
束美艳
顾晓鹤
孙林
朱金山
陈婷婷
王凯
王权
杨贵军

引用本文:

束美艳,顾晓鹤,孙林,朱金山,陈婷婷,王凯,王权,杨贵军. 先验终端像元库支持下的GF-4多光谱影像自动云检测[J]. 遥感技术与应用, 2020, 35(1): 194-201.

Meiyan Shu,Xiaohe Gu,Lin Sun,Jinshan Zhu,Tingting Chen,Kai Wang,Quan Wang,Guijun Yang. Automatic Cloud Detection of GF4 Multispectral Imagery Supported by the Priori Terminal Pixel Library. Remote Sensing Technology and Application, 2020, 35(1): 194-201.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2020.1.0194        http://www.rsta.ac.cn/CN/Y2020/V35/I1/194

图1  CDAG云检测算法流程图
图2  局部矢量化结果图
图3  不同时相的GF4-PMS影像云检测结果
图4  不同类型的云检测结果
单波段 波段组合 波段比值
Band 1(0.17) Band 1, Band 2(0.18,0.14) Band 3/ Band 1(0.91,1.06)
Band 2(0.19) Band 1, Band 3(0.18,0.1) Band 3/ Band 2(0.99,1.06)
Band 1, Band 4(0.14,0.28)
Band 2, Band 4(0.14,0.3)
表1  GF-4PMS云检测算法
影像编号 云像元正确率/% 晴空像元正确率/% 误判率/% 漏判率/% 地表类型 主要云类型
1 92.21 99.43 0.57 7.01 植被 厚云
2 89.43 99.20 0.89 10.65 植被 碎云
3 91.54 95.75 4.32 8.97 水体 碎云
4 92.48 98.67 1.39 7.21 水体 薄云
5 91.80 97.64 2.16 8.74 城镇 厚云
6 96.55 92.31 7.80 3.45 沙漠 厚云
表2  GF4-PMS云检测结果精度评价结果
1 Wang Mi , Cheng Yufeng , Chang Xueli ,et al .High Accuracy On-orbit Geometric Calibration of Geostationary Satellite GF4 [J].Acta Geodaetica et Cartographica Sinica,2017,46(1):53-61.王密,程宇峰,常学立, 等 .高分四号静止轨道卫星高精度在轨几何定标[J].测绘学报,2017,46(1):53-61.
2 Song Ting , Gong Shaoqi , Liu Junzhi ,et al .Performance Assessment of Atmospheric Correction for Multimuspectral Data of GF-4 on Inland CaseⅡTurbid Water [J].Spectroscopy and Spectral Analysis,2018(4):1191-1197.宋挺,龚绍琦,刘军志, 等 .浑浊二类水体的高分四号卫星大气校正效果分析[J].光谱学与光谱分析,2018(4):1191-1197.
3 Wang Quan , Sun Lin , Wei Jing ,et al .Improvement of Dynamic Threshold Cloud Detection Algorithm and Its Application in High Resolution Satellite [J].Acta Optica Sinica,2018,38(10):376-385.王权,孙林,韦晶, 等 .动态阈值云检测方法改进及高分辨率卫星应用[J].光学学报,2018,38(10):376-385.
4 Liu Xinyan , Sun Lin , Yang Yikun ,et al .Cloud and Cloud Shadow Detection Algorithm for Gaofen-4 Satellite Data [J].Acta Optica Sinica,2018,39(1):446-457.刘心燕,孙林,杨以坤, 等 .高分四号卫星数据云和云阴影检测算法[J].光学学报,2018,39(1):446-457.
5 Nie Juan , Deng Lei , Hao Xianglei ,et al .Application of GF-4 Satellite in Drought Remote Sensing Monitoring: A case study of Southeastern Inner Mongolia [J].Journal of Remote Sensing,2018,22(3):400-407.聂娟,邓磊,郝向磊, 等 .高分四号卫星在干旱遥感监测中的应用[J].遥感学报,2018,22(3):400-407.
6 Sun L , Liu X , Yang Y ,et al .A Cloud Shadow Detection Method Dombined with Cloud Height Iteration and Spectral Analysis for Landsat 8 OLI Data[J].ISPRS Journal of Photogrammetry and Remote Sensing,2018,138:193-207.
7 Qiu S , Zhu Z , He B B .Fmask 4.0: Improved Cloud and Cloud Shadow Detection in Landsats 4–8 and Sentinel-2 Imagery[J].Remote Sensing of Environment,2019,231:111205.doi:10.1016/j.rse.2019.05.024 .
doi: 10.1016/j.rse.2019.05.024
8 Rossow W B , Mosher F , Kinsella E ,et al .ISCCP Cloud Algorithm Intercomparison [J].Journal of Applied Meteorology,1985,24(9):184-192.
9 Rossow W B , Garder L C .Cloud Detection Using Satellite Measurements of Infrared and Visible Radiances for ISCCP [J].Journal of Climate,1993,12(12):2341-2369.
10 Kriebel K T , Gesell G , Kaâ¨Stner M ,et al .The Cloud Analysis Tool APOLLO: Improvements and Validations[J].International Journal of Remote Sensing,2003,24(12):2389-2408.
11 Stowe L L , Mcclain E P , Carey R ,et al .Global Distribution of Cloud Cover Derived from NOAA/AVHRR Operational Satellite Data[J].Advances in Space Research,1991,11(3):51-54.
12 Sun L , Wei J , Wang J ,et al .A Universal Dynamic Threshold Cloud Detection Algorithm (UDTCDA) Supported by a Prior Surface Reflectance Database[J].Journal of Geophysical Research: Atmospheres,2018,121(12):7172-7196.
13 Sun L , Zhou X , Wei J ,et al .A New Cloud Detection Method Supported by GlobeLand30 Data Set[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(10):2151-1535.
14 Gao Xianjun , Wan Youchuan , Zheng Shunyi ,et al .Real-Time Automatic Cloud Detection during the Process of Taking Aerial Photographs [J].Spectroscopy and Spectral Analysis,2014,34(7):1909-1913.高贤君,万幼川,郑顺义, 等 .航空摄影过程中云的实时自动检测[J].光谱学与光谱分析,2014,34(7):1909-1913.
15 Liu S , Zhang L , Zhang Z ,et al .Automatic Cloud Detection for All-Sky Images Using Superpixel Segmentation [J].IEEE Geoscience & Remote Sensing Letters,2014,12(2):354-358.
16 Tan Kai , Zhang Yongjun , Tong Xin ,et al .Automatic Cloud Detection for Chinese High Resolution Remote Sensing Satellite Imagery [J].Acta Geodaetica et Cartographica Sinica,2016,45(5):581-591.谭凯,张永军,童心, 等 .国产高分辨率遥感卫星影像自动云检测[J].测绘学报,2016,45(5):581-591.
17 Fei Wenlong ,Lü Hong, Wei Zhihui .Application of Graph Cut Method in Cloud Detection in Satellite Cloud Image [J].Transactions of Atmospheric Sciences,2012,35(4):502-507.费文龙, 吕红, 韦志辉.图割模型在卫星云图云检测中的应用[J].大气科学学报,2012,35(4):502-507.
18 Li P , Dong L , Xiao H ,et al .A Cloud Image Detection Method based on SVM Vector Machine[J].Neurocomputing,2015,169:34-42.
19 Chen Yang , Fan Rongshuang , Wang Jingxue ,et al .Cloud Detection of ZY-3 Satellite Remote Sensing Image based on Deep Learning[J].Acta Optica Sinica,2018,38(1):0128005
19 陈洋,范荣双,王竞雪,等 .基于深度学习的资源三号卫星遥感影像云检测方法[J].光学学报,2018,38(1):0128005.
20 Weng Liguo .Satellite Imagery Cloud Fraction based on Deep Extreme Learning Machine [J].Computer Science,2018,45(4):227-232.翁理国.基于深度极限学习机的卫星云图云量计算[J].计算机科学,2018,45(4):227-232.
21 Sun L , Mi X , Wei J ,et al .A Cloud Detection Algorithm-generating Method for Remote Sensing Data at Visible to Short-wave Infrared Wavelengths[J].Isprs Journal of Photogrammetry and Remote Sensing,2017,124:70-88.
22 Li Z , Shen H , Li H ,et al .Multi-feature Combined Cloud and Cloud Shadow Detection in GaoFen-1 Wide Field of View Imagery[J].Remote Sensing of Environment,2017,191:342-358.
23 Foga S , Scaramuzza P L , Guo S ,et al .Cloud Detection Algorithm Comparison and Validation for Operational Landsat data Products[J].Remote Sensing of Environment,2017,194:379-390.
24 Chena N , Li W , Gatebe C ,et al .New Neural Network Cloud Mask Algorithm based on Radiative Transfer Simulations[J].Remote Sensing of Environment,2018,219:62-71.
25 Zhu X , Helmer E H .An Automatic Method for Screening Clouds and Cloud Shadows in Optical Satellite Image Yime Series in Cloudy Regions [J].Remote Sensing of Environment,2018,214:135-153.
26 Qiu S , He B , Zhu Z ,et al .Improving Fmask Cloud and Dloud Shadow Detection Inmountainous Area for Landsats 4–8 Images[J].Remote Sensing of Environment,2017,199:107-119.
27 Chai D , Newsam S , Zhang K H ,et al .Cloud and Cloud Shadow Detection in Landsat Imagery based on Deep Convolutional Neural Betworks[J].Remote Sensing of Environment,2019,225:307-316.
28 Zhai H , Zhang H , Zhang L ,et al .Cloud/Shadow Detection based on Spectral Indices for Multi-hyperspectral Optical Remote Sensing Imagery[J].ISPRS Journal of Photogrammetry and Remote Sensing,2018,144:235-253.
[1] 王奎,张荣,尹东,张海堂. 基于边缘特征和AdaBoost分类的遥感图像云检测[J]. 遥感技术与应用, 2013, 28(2): 263-268.
[2] 杨春燕, 陈圣波, 包书新, 宋金红. 长春地区云检测及云相态反演研究[J]. 遥感技术与应用, 2010, 25(2): 245-250.
[3] 曹广真,漆成莉,马 刚,张凤英,吴雪宝. FY-3A气象卫星VIRR云检测产品与IRAS的匹配[J]. 遥感技术与应用, 2008, 23(1): 89-92.
[4] 岳海霞, 杨汝良. 复杂场景的SAR 原始数据模拟研究[J]. 遥感技术与应用, 2006, 21(5): 450-455.
[5] 谈建国,周红妹,陆 贤,杨崇俊. NOAA卫星云检测和云修复业务应用系统的研制和建立[J]. 遥感技术与应用, 2000, 15(4): 228-231.