Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (1): 44-54    DOI: 10.11873/j.issn.1004-0323.2021.1.0044
综述     
便携式傅里叶变换红外光谱仪在大气温室气体观测中的应用进展
车轲1,2(),刘毅1,2,蔡兆男1,2(),杨东旭1,2,王海波1,2,朱思虹1,2
1.中国科学院大气物理研究所,中层大气与全球环境探测重点实验室,北京 100029
2.中国科学院大学,北京 100049
Review of Atmospheric Greenhouse Gas Observation and Application based on Portable Fourier Transform Infrared Spectrometer
Ke Che1,2(),Yi Liu1,2,Zhaonan Cai1,2(),Dongxu Yang1,2,Haibo Wang1,2,Sihong Zhu1,2
1.Key Laboratory of middle Atmosphere and Global Environment Observation,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
 全文: PDF(2913 KB)   HTML
摘要:

大气温室气体柱浓度地基遥感观测是碳监测卫星验证和校正的有效手段,目前主要依赖于昂贵且移动困难的高分辨率傅里叶变换红外光谱仪(120/125 HR)。采用便携式较低光谱分辨率(0.5cm-1)傅里叶变换红外光谱仪(EM27/SUN)进行温室气体柱浓度的监测提供了一种新型的便捷手段。EM27/SUN通过自带的太阳跟踪器记录太阳直射辐射光谱,根据温室气体在短波红外波段存在明显吸收线的原理,利用非线性最小二乘算法PROFFIT和GGG反演柱气体平均干空气摩尔分数Xgas。通过高精度反演算法反演后得到的数据具有较高精度和高稳定度,具备进行科学应用的条件。EM27/SUN在国际上的科学应用主要总结为3类:烟羽成分浓度测量、卫星验证以及城市尺度源汇估算。重点讨论了EM27/SUN相比于其他观测手段的优势及带来的创新性结果。展望了未来EM27/SUN可以用于国内外各种特殊点的气体羽流分析、卫星数据验证和城市源汇分析工作,还可以用于不同TCCON站点的传递定标。

关键词: 温室气体柱浓度傅里叶变换红外光谱仪科学应用    
Abstract:

Ground-based remote sensing observation of Atmospheric greenhouse gas (GHG) column concentration has been taken great effort to support and validate satellite data . The high-resolution IFS 120/125 HR owns outstanding capabilities in its precision, but it is expansive and poor in transportability. The portable low resolution (0.5 cm-1) Fourier infrared spectrometer EM27/SUN records the direct solar absorption spectra through its own solar tracker, which is a new method to provide GHG monitoring where TCCON stations are sparse. Based on the principle that GHG have obvious absorption lines in the short-wave infrared region, the non-linear least squares algorithm PROFFIT and GGG are widely used to retrieve the column gas average dry air mole fraction (Xgas) from the recorded spectrum. EM27/SUN data has high accuracy and stability, which is suitable for scientific application. The international applications of EM27/Sun are mainly summarized into three categories: remote sensing of the gaseous composition of plumes, satellite validation and gas emission estimation on the city scale. The unique advantages and innovative results of EM27/SUN compared with other observation methods are discussed. It is proposed that the protable EM27/SUN may help quantifying the gas components of plumes, validating satellite data from home and abroad, source distribution estimation in urban areas and quantizing station-to-station variability of different TCCON sites by using this travelling spectrometer.

Key words: Greenhouse gas column concentration    Fourier transform infrared spectrometer    Science applications
收稿日期: 2019-11-01 出版日期: 2021-04-13
ZTFLH:  P407  
基金资助: 中国科学院战略性先导科技专项(XDA17010102);国家自然科学基金项目(41875043);中国科学院青年创新促进会项目
通讯作者: 蔡兆男     E-mail: cheke@mail.iap.ac.cn;caizhaonan@mail.iap.ac.cn
作者简介: 车轲(1995-),女,江西南昌人,硕士研究生,主要从事地基大气温室气体遥感方面的研究。E?mail:cheke@mail.iap.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
车轲
刘毅
蔡兆男
杨东旭
王海波
朱思虹

引用本文:

车轲,刘毅,蔡兆男,杨东旭,王海波,朱思虹. 便携式傅里叶变换红外光谱仪在大气温室气体观测中的应用进展[J]. 遥感技术与应用, 2021, 36(1): 44-54.

Ke Che,Yi Liu,Zhaonan Cai,Dongxu Yang,Haibo Wang,Sihong Zhu. Review of Atmospheric Greenhouse Gas Observation and Application based on Portable Fourier Transform Infrared Spectrometer. Remote Sensing Technology and Application, 2021, 36(1): 44-54.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.1.0044        http://www.rsta.ac.cn/CN/Y2021/V36/I1/44

特性NDACCTCCON
主要监测气体O3, HNO3, HF, HCl, CO, CH4, N2O, ClONO2, HCN, C2H6CO2、CH4、H2O、O2、HDO、HF、CO、N2O等
主要FTS

Bruker 120/125 HR;

Bruker 120M;

Bomen DA8;

Bruker 120/125 HR
产品

气体垂直廓线;

气体柱浓度

气体柱浓度
反演算法SFIT/ PROFFITGGG
先验廓线WACCMTCCON先验廓线生成程序
CH4反演波段(cm-1)

2 611.6~2 613.35

2 613.7~2 615.4

2 835.55~2 835.8

2 903.82~2 903.925

2 941.51~2 942.22

5 872.0~5 988.0

5 996.45~6 007.55

6 007.0~6 145.0

CO反演波段(cm-1)

2 057.7~2 058.0

2 069.56~2 069.76

2 157.5~2 159.15

4 208.7~4 257.3

4 262.0~4 318.8

表1  NDACC-IRWG和TCCON的区别
图1  北京EM27光谱仪观测
图2  EM27的光程图
图3  反演算法流程图
图4  PROFFIT和GGG迭代拟合结果对比图
特性120/125 HREM27
光谱分辨率<0.02 cm-1<0.5 cm-1
最大光程差45 cm1.8 cm
探测器

InGaAs (3 900~11 000 cm-1)

Si (9 000~15 300 cm-1)

InGaAs;扩展InGaAs (4 000~11 000 cm-1)
GPR (Ghost parent ratio)考虑几乎不考虑
反射器运动的反射器上使用摩擦轴承而易产生磨损反射器由万向架固定安装,不易产生摩擦和磨损
反演算法GGG2014GGG2014;PROFFIT v9.6
表2  IFS125HR和EM27的区别
1 Jiang Kejun. IPCC Special Report on1.5℃ Warming: A Starting of New Era of Global Mitigation[J]. Climate Change Research, 2018, 14(6):640-642.
1 姜克隽. IPCC1.5 ℃特别报告发布,温室气体减排新时代的标志[J]. 气候变化研究进展, 2018, 14(6):640-642.
2 Running S W, Baldocchi D D, Turner D P, et al. A Global Terrestrial Monitoring Network Integrating Tower Fluxes, Flask Sampling, Ecosystem Modeling and EOS Satellite Data[J]. Remote Sensing of Environment, 1999, 70(1):108-127. doi: 10.1016/S0034-4257(99)00061-9.
doi: 10.1016/S0034-4257(99)00061-9
3 Karion A, Sweeney C, Tans P, et al. AirCore: An Innovative Atmospheric Sampling System[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(11):1839-1853. doi: 10.1175/2010JTECHA1448.1.
doi: 10.1175/2010JTECHA1448.1
4 Miles N L, Martins D K, Richardson S J, et al. Calibration and Field Testing of Cavity Ring-down Laser Spectrometers Measuring CH4,CO2,and Δ13 CH4 Deployed on Towers in The Marcellus Shale Region[J].Atmospheric Measurement Te-chniques,2018,11(3):1273-1295. doi:10.5194/amt-2017-364.
doi: 10.5194/amt-2017-364
5 Alvarez-Salgado X A, Miller A E J. Simultaneous Determination of Dissolved Organic Carbon and Total Dissolved Nitrogen in Seawater by High Temperature Catalytic Oxidation: Conditions for Precise Shipboard Measurements[J]. Marine Chemistry, 1998, 62(3-4): 325-333. doi: 10.1016/S0304-4203(98)00037-1.
doi: 10.1016/S0304-4203(98)00037-1
6 Akagi S K, Craven J S, Taylor J W, et al. Evolution of Trace Gases and Particles Emitted by a Chaparral Fire in California[J]. Atmospheric Chemistry and Physics, 2012, 12(3):1397-1421. doi: 10.5194/acp-12-1397-2012.
doi: 10.5194/acp-12-1397-2012
7 Yang Z, Washenfelder R A, Keppel-Aleks G, et al. New Constraints on Northern Hemisphere Growing Season Net Flux[J]. Geophysical Research Letters, 2007, 34(12):1-23. doi: 10.1029/2007GL029742.
doi: 10.1029/2007GL029742
8 Buschmann M, Deutscher N. M, Sherlock V,et al. Retrieval of XCO2 from Ground-based Mid-infrared (NDACC) Solar Absorption Spectra and Comparison to TCCON[J]. Atospheric Measurement Techniques, 2016, 8(10):10523-10548. doi: 10.5194/amt-9-577-2016.
doi: 10.5194/amt-9-577-2016
9 David F P, Vanessa S, John R, et al. The Total Carbon Column Observing Network Site Description for Lauder, New Zealand[J]. Earth System Science Data, 2017, 9(2):977-992. doi: 10.5194/essd-9-977-2017.
doi: 10.5194/essd-9-977-2017
10 Wunch D, Toon G C, Blavier J F L, et al. The Total Carbon Column Observing Network[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1943):2087-2112. doi: 10.1098/rsta.2010.0240.
doi: 10.1098/rsta.2010.0240
11 Wunch D, Toon G C, Wennberg P O, et al. Calibration of the Total Carbon Column Observing Network Using Aircraft Profile Data[J]. Atmospheric Measurement Techniques, 2010, 3(5):1351-1362. doi: 10.5194/amt-3-1351-2010.
doi: 10.5194/amt-3-1351-2010
12 Foucher P Y, Chedin A, Armante R, et al. Carbon Dioxide Atmospheric Vertical Profiles Retrieved from Space Observation Using ACE-FTS Solar Occultation Instrument[J]. Atmospheric Chemistry and Physics, 2011, 11(6):2455-2470. doi: 10.5194/acp-11-2455-2011.
doi: 10.5194/acp-11-2455-2011
13 Kobayashi N, Inoue G, Kawasaki M, et al. Remotely Operable Compact Instruments for Measuring Atmospheric CO2 and CH4 Column Densities at Surface Monitoring Sites[J]. Atmospheric Measurement Techniques, 2010, 3(4):1103-1112. doi: 10.5194/amt-3-1103-2010.
doi: 10.5194/amt-3-1103-2010
14 Mullens J, Carleer R, Reggers G, et al. Coupling between FTIR (Bruker IFS 66) and TG (Du Pont TGA 951–2000)[J]. Thermochimica Acta, 1992, 212(92):219-225. doi: 10.1016/0040-6031(92)80237-Q.
doi: 10.1016/0040-6031(92)80237-Q
15 Makarova M V, Serdyukov V I, Arshinov M Y, et al. First Results of Ground-based Fourier Transform Infrared Measurements of the H2O Total Column in the Atmosphere over West Siberia[J]. International Journal of Remote Sensing, 2014,35(15):5637-5650. doi:10.1080/01431161.2014. 945016.
doi: 10.1080/01431161.2014. 945016
16 Flores E, Viallon J, Moussay P, et al. Calibration Strategies for FT-IR and Other Isotope Ratio Infrared Spectrometer Instruments for Accurate Delta C-13 and Delta O-18 Measurements of CO2 in Air[J]. Analytical Chemistry, 2017, 89(6):3648-3655. doi: 10.1021/acs.analchem.6b05063.
doi: 10.1021/acs.analchem.6b05063
17 Melroy H R, Wilson E L, Clarke G B, et al. Autonomous Field Measurements of CO2 in the Atmospheric Column with the Miniaturized Laser Heterodyne Radiometer (Mini-LHR)[J]. Applied Physics B-Lasers and Optics, 2015, 120(4):609-615. doi: 10.1007/s00340-015-6172-3.
doi: 10.1007/s00340-015-6172-3
18 Gisi M, Hase F, Dohe S, et al. Camtracker: A New Camera Controlled High Precision Solar Tracker System for FTIR-spectrometers[J]. Atmospheric Measurement Techniques, 2011, 4(1):47-54. doi: 10.5194/amt-4-47-2011.
doi: 10.5194/amt-4-47-2011
19 Hase F, Frey M, Kiel M, et al. Addition of a Channel for XCO Observations to a Portable FTIR Spectrometer for Greenhouse Gas Measurements[J]. Atmospheric Measurement Techniques, 2016, 9(5):2303-2313. doi: 10.5194/amt-9-2303-2016.
doi: 10.5194/amt-9-2303-2016
20 Hedelius J K. What Can We Infer About the Atmospheric Composition within the South Coast Air Basin from Remote Sensing[D]. Pasadena, CA: California Institute of Technology, 2017. doi: 10.7907/Z9862DGR.
doi: 10.7907/Z9862DGR
21 Heinle L, Chen J. Automated Enclosure and Protection System for Compact Solar-tracking Spectrometers[J]. Atmospheric Measurement Techniques, 2018, 11(4):2173-2185. doi: 10.5194/amt-11-2173-2018.
doi: 10.5194/amt-11-2173-2018
22 Velazco V, Deutscher N, Morino I, et al. Satellite and Ground-based Measurements of XCO2 in a Remote Semiarid Region of Australia[J]. Earth System Science Data, 2019, 11(3):935-946. doi: 10.5194/essd-11-935-2019.
doi: 10.5194/essd-11-935-2019
23 Hedelius J K, Viatte C, Wunch D, et al. Assessment of Errors and Biases in Retrievals of XCO2, XCH4, XCO, and XN2O from a 0.5 cm-1 Resolution Solar-viewing Spectrometer[J]. Atmospheric Measurement Techniques, 2016, 9(8):3527-3546. doi: 10.5194/amt-9-3527-2016.
doi: 10.5194/amt-9-3527-2016
24 Gisi M, Hase F, Dohe S, et al. XCO2-measurements with a Tabletop FTS Using Solar Absorption Spectroscopy[J]. Atmospheric Measurement Techniques, 2012, 5(11):2969-2980. doi: 10.5194/amt-5-2969-2012.
doi: 10.5194/amt-5-2969-2012
25 Keppel-Aleks G, Toon G C, Wennberg P O , et al. Reducing the Impact of Source Brightness Fluctuations on Spectra Obtained by Fourier-transform Spectrometry[J]. Applied Optics. 2007, 46(21):4774-4779. doi: 10.1364/AO.46.004774.
doi: 10.1364/AO.46.004774
26 Naylor D A, Tahic M K. Apodizing Functions for Fourier Transform Spectroscopy[J]. Journal of the Optical Society of America A, 2007, 24(11):3644-3648. doi: 10.1364/JOSAA.24.003644.
doi: 10.1364/JOSAA.24.003644
27 Bergland G. A Radix-eight Fast Fourier Transform Subroutine for Real-valued Series[J]. IEEE Transactions on Audio and Electroacoustics, 1969, 17(2):138-144. doi: 10.1109/TAU.1969.1162043.
doi: 10.1109/TAU.1969.1162043
28 Mertz L. Correction of Phase Errors in Interferograms[J]. Applied Optics, 1963, 2(12):1332-1332. doi: /10.1364/AO.2.001332.
doi: /10.1364/AO.2.001332
29 Mertz L. Auxiliary Computation for Fourier Spectrometry[J]. Infrared Physics, 1967, 7(1):17-23. doi: 10.1016/0020-0891(67)90026-7.
doi: 10.1016/0020-0891(67)90026-7
30 Forman M L, Steel W H, Vanasse G A. Correction of Asymmetric Interferograms Obtained in Fourier Spectroscopy[J]. Journal of the Optical Society of America, 1966, 56(1):59-63. doi: 10.1364/JOSA.56.000059.
doi: 10.1364/JOSA.56.000059
31 Chandra S, Fleming E L, Schoeberl M R, et al. Monthly Mean Global Climatology of Temperature, Wind, Geopotential Height and Pressure for 0~120 km[J]. Advances in Space Research, 1990, 10(6):3-12. doi: 10.1016/0273-1177(90)90230-W.
doi: 10.1016/0273-1177(90)90230-W
32 Manuel L, Funke B, Jurado-Navarro Á A, et al. Validation of the MIPAS CO2 Volume Mixing Ratio in the Mesosphere and Lower Thermosphere and Comparison with WACCM Simulations: Validation of the MIPAS CO2[J]. Journal of Geophysical Research Atmospheres, 2017, 122(15):8345-8366. doi: 10.1002/2017JD026805.
doi: 10.1002/2017JD026805
33 Garcia R R, Solomon S. A Numerical-model of the Zonally Averaged Dynamical and Chemical-structure of the Middle Atmosphere[J]. Journal of Geophysical Research-oceans, 1983, 88(NC2):1379-1400. doi: 10.1029/JC088iC02p01379.
doi: 10.1029/JC088iC02p01379
34 Garcia R R, Solomon S. The Effect of Breaking Gravity-Waves on the Dynamics and Chemical-composition of the Mesosphere and Lower Thermosphere[J]. Journal of Geophysical Research-atmospheres, 1985, 90(ND2):3850-3868. doi: 10.1029/JD090iD02p03850.
doi: 10.1029/JD090iD02p03850
35 Hase F, Höpfner M. Atmospheric Ray Path Modeling for Radiative Transfer Algorithms[J]. Applied Optics, 1999, 38(15): 3129-3133. doi: 10.1364/AO.38.003129.
doi: 10.1364/AO.38.003129
36 Rodgers C D. Inverse Methods for Atmospheric Sounding: Theory and Practice[M]. Singapore: World Scientific, 2000. doi: 10.1142/3171.
doi: 10.1142/3171
37 Frey M, Sha M K, Hase F, et al. Building the Collaborative Carbon Column Observing Network (COCCON): Long-term Stability and Ensemble Performance of the EM27/SUN Fourier Transform Spectrometer[J]. Atmospheric Measurement Techniques, 2019, 12(3):1513-1530. doi: 10.5194/amt-12-1513-2019.
doi: 10.5194/amt-12-1513-2019
38 Hase F, Hannigan J W, Coffey M T, et al. Intercomparison of Retrieval Codes Used for the Analysis of High-resolution, Ground-based FTIR Measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 87(1):25-52. doi: 10.1016/j.jqsrt.2003.12.008.
doi: 10.1016/j.jqsrt.2003.12.008
39 Sepulveda E, Schneider M, Hase F, et al. Long-term Validation of Tropospheric Column-averaged CH4 Mole Fractions Obtained by Mid-infrared Ground-based FTIR Spectrometry[J]. Atmospheric Measurement Techniques, 2012, 5(6):1425-1441. doi: 10.5194/amt-5-1425-2012.
doi: 10.5194/amt-5-1425-2012
40 Sepúlveda E, Schneider M, Hase F, et al. Tropospheric CH4 Signals as Observed by NDACC FTIR at Globally Distributed Sites and Comparison to GAW Surface Insitu Measurements[J]. Atmospheric Measurement Techniques, 2014, 7(7):2337-2360. doi: 10.5194/amt-7-2337-2014.
doi: 10.5194/amt-7-2337-2014
41 Wunch D, Toon G C, Sherlock V, et al. The Total Carbon Column Observing Network's GGG2014 Data Version[DB/OL]. doi:10.14291/tccon.ggg2014.documentation.R0/1221662, 2015, 2019.
42 Dohe S. Measurements of Atmospheric CO2 Columns Using Ground-based FTIR Spectra[D]. Karlsruhe: Karlsruher Institute f¨ur Technologie, 2013.
43 Frey M, Hase F, Blumenstock T, et al. Calibration and Instrumental Line Shape Characterization of a Set of Portable FTIR Spectrometers for Detecting Greenhouse Gas Emissions[J]. Atmospheric Measurement Techniques, 2015, 8(7):3047-3057. doi: 10.5194/amt-8-3047-2015.
doi: 10.5194/amt-8-3047-2015
44 Hase F. Improved Instrumental Line Shape Monitoring for the Ground-based, High-resolution FTIR Spectrometers of the NDACC[J]. Atmospheric Measurement Techniques, 2012, 5(3):603-610. doi: 10.5194/amt-5-603-2012.
doi: 10.5194/amt-5-603-2012
45 Hase F, Blumenstock T, Paton-Walsh C. Analysis of the Instrumental Line Shape of High-resolution Fourier Transform IR Spectrometers with Gas Cell Measurements and New Retrieval Software[J]. Applied Optics, 1999, 38(15):3417-3422. doi: 10.1364/AO.38.003417.
doi: 10.1364/AO.38.003417
46 Klappenbach F, Bertleff M, Kostinek J, et al. Accurate Mobile Remote Sensing of XCO2 and XCH4 Latitudinal Transects from Aboard a Research Vessel[J]. Atmospheric Measurement Techniques, 2015, 8(12):5023-5038. doi: 10.5194/amt-8-5023-2015.
doi: 10.5194/amt-8-5023-2015
47 Wang W, Tian Y, Liu C, et al. Investigating the Performance of a Greenhouse Gas Observatory in Hefei, China[J]. Atmospheric Measurement Techniques, 2017, 10(7):2627-2643. doi: 10.5194/amt-10-2627-2017.
doi: 10.5194/amt-10-2627-2017
48 Luther A, Kleinschek R , Scheidweiler L , et al. Quantifying CH4 Emissions from Hard Coal Mines Using Mobile Sun-viewing Fourier Transform Spectrometry[J]. Atmospheric Measurement Techniques, 2019, 12(10):5217-5230. doi: 10.5194/amt-12-5217-2019.
doi: 10.5194/amt-12-5217-2019
49 Butz A , Dinger A S , Bobrowski N , et al. Remote Sensing of Volcanic CO2, HF, HCl, SO2, and BrO in the Downwind Plume of Mt. Etna[J]. Atmospheric Measurement Techniques, 2017, 10(1):1-14. doi: 10.5194/amt-10-1-2017.
doi: 10.5194/amt-10-1-2017
50 Kille N , Baidar S , Handley P , et al. The CU Mobile Solar Occultation Flux Instrument: Structure Functions and Emission Rates of NH3, NO2 and C2H6[J]. Atmospheric Measurement Techniques, 2017, 10(1):373-392. doi: 10.5194/amt-10-373-2017.
doi: 10.5194/amt-10-373-2017
51 Nakajima M, Suto H, Kuze A, et al. On-orbit Status of TANSO Onboard GOSAT[J]. Proceedings of SPIE- The International Society for Optical Engineering, 2011, 8176(23):6012-6015. doi: 10.1117/12.894935.
doi: 10.1117/12.894935
52 Yoshida Y, Ota Y, Eguchi N, et al. Retrieval Algorithm for CO2 and CH4 Column Abundances from Short-wavelength Infrared Spectral Observations by the Greenhouse Gases Observing Satellite[J]. Atmospheric Measurement Techniques, 2011, 4(4):717-734. doi: 10.5194/amt-4-717-2011.
doi: 10.5194/amt-4-717-2011
53 Yoshida Y, Kikuchi N, Morino I, et al. Improvement of the Retrieval Algorithm for GOSAT SWIR XCO2 and XCH4 and their Validation Using TCCON Data[J]. Atmospheric Measurement Techniques, 2013, 6(6):1533-1547. doi: 10.5194/amt-6-1533-2013.
doi: 10.5194/amt-6-1533-2013
54 O'Dell C W, Connor B, Boesch H, et al. The ACOS CO2 Retrieval Algorithm-Part 1: Description and Validation agai-nst Synthetic Observations[J]. Atmospheric Measurement Techniques,2012,5(1):99-121. doi:10.5194/amt-5-99-2012.
doi: 10.5194/amt-5-99-2012
55 Crisp D , Fisher B M , O'Dell C , et al. The ACOS CO2 Retrieval Algorithm - Part II: Global XCO2 Data Characterization[J]. Atmospheric Measurement Techniques, 2012, 5(4):687-707. doi: 10.5194/amt-5-687-2012.
doi: 10.5194/amt-5-687-2012
56 Liu Y, Yang D, Cai Z. A Retrieval Algorithm for TanSat XCO2 Observation: Retrieval Experiments Using GOSAT Data[J]. Chinese Science Bulletin, 2013, 58(13):1520-1523. doi: 10.1007/s11434-013-5680-y.
doi: 10.1007/s11434-013-5680-y
57 Landgraf J, aan de Brugh J , Scheepmaker R , et al. Carbon Monoxide Total Column Retrievals from TROPOMI Shortwave Infrared Measurements[J]. Atmospheric Measurement Techniques, 2016, 9(10): 4955-4975. doi: 10.5194/amt-9-4955-2016.
doi: 10.5194/amt-9-4955-2016
58 Hu H , Hasekamp O , Butz A , et al. The Operational Methane Retrieval Algorithm for TROPOMI[J]. Atmospheric Measurement Techniques, 2016, 9(11): 5423-5440. doi: 10.5194/amt-9-5423-2016.
doi: 10.5194/amt-9-5423-2016
59 Shiomi K, Kuze A, Suto H, et al. GOSAT CO2 and CH4 Validation Activity with a Portable FTS at Pasadena, Chino, and Railroad Valley[C]∥American Geophysical Union Fall Meeting, San Francisco, 2015.
60 Kataoka F, Crisp D, Taylor T E , et al. The Cross-calibration of Spectral Radiances and Cross-validation of CO2 Estimates from GOSAT and OCO-2[J]. Remote Sensing, 2017, 9(11):1158. doi: 10.3390/rs9111158.
doi: 10.3390/rs9111158
61 Jacobs N, Simpson W R, Wunch D, et al. Quality Controls, Bias, and Seasonality of CO2 Columns in the Boreal Forest with Orbiting Carbon Observatory-2, Total Carbon Column Observing Network, and EM27/SUN measurements[J]. Atmospheric Measurement Techniques, 2020, 13(9):5033-5063. doi: 10.5194/amt-13-5033-2020.
doi: 10.5194/amt-13-5033-2020
62 Knapp M, Kleinschek R, Hase F, et al. Ship-borne Measurements of XCO2, XCH4, and XCO Above the Pacific Ocean and Comparison to CAMS Atmospheric Analyses and S5P/TROPOMI[J]. Earth System Science Data, 2020. doi: 10.5194/essd-2020-132.
doi: 10.5194/essd-2020-132
63 Oishi Y, Ishida H, Nakajima T Y, et al. Preliminary Verification for Application of a Support Vector Machine-based Cloud Detection Method to GOSAT-2 CAI-2[J]. Atmospheric Measurement Techniques, 2018, 11(5):2863-2878. doi: 10.5194/amt-11-2863-2018.
doi: 10.5194/amt-11-2863-2018
64 Eldering A, Taylor T E, O'Dell C W. The OCO-3 Mission: Measurement Objectives and Expected Performance based on 1 Year of Simulated Data[J]. Atmospheric Measurement Tech-niques, 2019, 12(4):2341-2370. doi: 10.5194/amt-12-2341-2019.
doi: 10.5194/amt-12-2341-2019
65 Babenhauserheide A, Hase F, Morino I. Net CO2 Fossil Fuel Emissions of Tokyo Estimated Directly from Measurements of the Tsukuba TCCON Site and Radiosondes[J]. Atmospheric Measurement Techniques, 2020, 13(5):2697-2710. doi: 10.5194/amt-13-2697-2020.
doi: 10.5194/amt-13-2697-2020
66 Wunch D , Jones D B A , Toon G C , et al. Emissions of Methane in Europe Inferred by Total Column Measurements[J]. Atmospheric Chemistry and Physics, 2019, 19(6):3963-3980. doi: 10.5194/acp-19-3963-2019.
doi: 10.5194/acp-19-3963-2019
67 Hase F , Frey M , Blumenstock T , et al. Application of Portable FTIR Spectrometers for Detecting Greenhouse Gas Emissions of the Major City Berlin[J]. Atmospheric Measurement Techniques, 2015, 8(7):3059-3068. doi: 10.5194/amt-8-3059-2015.
doi: 10.5194/amt-8-3059-2015
68 Vogel F R , Frey M , Staufer J , et al. XCO2 in an Emission Hot-spot Region: the COCCON Paris Campaign 2015[J]. Atmospheric Chemistry and Physics, 2019, 19(5):3271-3285. doi: 10.5194/acp-19-3271-2019.
doi: 10.5194/acp-19-3271-2019
69 Chen J , Viatte C , Hedelius J K , et al. Differential Column Measurements Using Compact Solar-tracking Spectrometers[J]. Atmospheric Chemistry and Physics, 2016, 16(13):8479-8498. doi: 10.5194/acp-16-8479-2016.
doi: 10.5194/acp-16-8479-2016
70 Zhao X , Marshall J , Hachinger S , et al. Analysis of Total Column CO2 and CH4 Measurements in Berlin with WRF-GHG[J]. Atmospheric Chemistry and Physics, 2019, 19(17): 11279-11302. doi: 10.5194/acp-19-11279-2019.
doi: 10.5194/acp-19-11279-2019
71 Kille N, Chiu R, Frey M, et al. Separation of Methane Emissions From Agricultural and Natural Gas Sources in the Colorado Front Range[J]. Geophysical Research Letters, 2019, 46(7):3990-3998. doi: 10.1029/2019GL082132. doi: 10.1029/2019GL082132.
doi: 10.1029/2019GL082132. doi: 10.1029/2019GL082132
72 Viatte C, Lauvaux T, Hedelius J K, et al. Methane Emissions from Dairies in the Los Angeles Basin[J]. Atmospheric Chemistry and Physics, 2017, 17(12):7509-7528. doi: 10.5194/acp-17-7509-2017.
doi: 10.5194/acp-17-7509-2017
73 Chen J, Dietrich F, Franklin J, et al. Mesoscale Column Network for Assessing GHG and NOx Emissions in Munich[C]∥European Geosciences Union General Assembly Conference, Vienna, 2018.
[1] 张子瑾,董晓龙. 同化FY-3C/MWHTS观测资料反演的海面气压场对台风数值预报的影响[J]. 遥感技术与应用, 2020, 35(4): 901-910.
[2] 宋文平,张斌,牛常领,郭亮亮. 一种融合最小二乘和相位相关的粗匹配纠正算法[J]. 遥感技术与应用, 2019, 34(6): 1296-1304.
[3] 谷松岩,王振占,卢乃锰,杨忠东,李靖,张升伟,杨磊,吴雪宝. 风云三号微波湿度计航空校飞辐射定标原理及数据分析[J]. 遥感技术与应用, 2019, 34(6): 1205-1211.
[4] 罗庆洲, 朱传武, 王培法. 使用MODIS近红外图像直接计算地表水汽压的研究—以贵州省为例[J]. 遥感技术与应用, 2019, 34(2): 398-403.
[5] 黄邑燊, 王振占, 陆浩. 全极化微波辐射计中数字相关器的误差分析[J]. 遥感技术与应用, 2019, 34(1): 101-106.
[6] 王金虎,葛俊祥,魏鸣,张其林,李祥超. 两种相态降水粒子对微波、毫米波衰减特性的影响分析[J]. 遥感技术与应用, 2017, 32(6): 1048-1055.
[7] 王雪梅,马明国. 关联DMSP-OLS灯光数据的全球发文量态势分析[J]. 遥感技术与应用, 2017, 32(6): 1093-1099.
[8] 何炳伟,赵伟,李爱农,冯文兰,谭剑波,雷光斌,南希. 基于Landsat 8遥感影像的新旧城区热环境特征对比研究-以成都市为例[J]. 遥感技术与应用, 2017, 32(6): 1141-1150.
[9] 王丽娟,郭铌,王玮,芦亚玲,沙莎. 基于TESEBS模型估算高原地区地表蒸散发[J]. 遥感技术与应用, 2017, 32(3): 507-513.
[10] 何月,张小伟,杜惠良,胡波,高大伟. 利用静止气象卫星监测浙江海上大雾[J]. 遥感技术与应用, 2015, 30(3): 599-606.
[11] 刘 广,郭华东,范景辉. 基于外部DEM的InSAR图像配准方法研究[J]. 遥感技术与应用, 2008, 23(1): 72-76.
[12] 陈贤章,李新 ,鲁安新 , 李文君 . 积雪定量化遥感研究进展[J]. 遥感技术与应用, 1996, 11(4): 46-52.
[13] 张宏名. 用遥感图像景观指示的气候调查法要点介绍 [J]. 遥感技术与应用, 1996, 11(4): 60-62.