Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (2): 381-390    DOI: 10.11873/j.issn.1004-0323.2021.2.0381
农业遥感专栏     
干旱对灌溉和雨养农田生态系统生产力的影响对比分析
刘莹1,3(),朱秀芳1,2,3(),徐昆1,3,陈令仪3,郭锐3
1.北京师范大学环境演变与自然灾害教育部重点实验室,北京 100875
2.北京师范大学遥感科学国家重点实验室,北京 100875
3.北京师范大学地理科学学部遥感科学与工程研究院,北京 100875
Comparative Analysis of the Impact of Drought on the Crop Productivity of Irrigated and Rain-fed Farmland Ecosystems
Ying Liu1,3(),Xiufang Zhu1,2,3(),Kun Xu1,3,Lingyi Chen3,Rui Guo3
1.Key Laboratory of Environmental Change and Natural Disaster,Ministry of Education,Beijing Normal University,Beijing 100875,China
2.State Key Laboratory of Remote Sensing Science,Beijing Normal University,Beijing 100875,China
3.Institute of Remote Sensing Science and Engineering,Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China
 全文: PDF(4870 KB)   HTML
摘要:

灌溉是农作物应对干旱等极端气候条件的有效调节机制,在全球气候变化的背景下,未来干旱等极端气候事件发生的频率和严重程度预估会增加,定量分析灌溉和雨养条件下干旱对农田生态系统农作物生长的影响有助于更好地评估人类应对极端气候事件对生态系统的消极影响的能力,为制定合理有效的生态系统保护措施提供依据。以中国北方干旱区为研究区,基于标准化降水蒸散指数产品和MODIS增强型植被指数以及总初级生产力产品,利用MK趋势分析,皮尔逊相关分析和一元线性回归分析研究了2000~2014年间中国北方干旱区农田生态系统干旱、植被指数以及总初级生产力的发展趋势,分析了中国北方旱区农作物对干旱的响应的滞后时间,在相应的滞后时间下对比分析了灌溉农田和雨养农田农作物受干旱影响的差异。研究结果显示:在2000~2014年间北方旱区农田生态系统64.10%的区域呈现干旱减轻的趋势、75.78%和81.87%的区域呈现植被指数增加和总初级生产力增加的趋势,其中64.82%的植被指数增加和68.34%总初级生产力增加的区域伴随着干旱的减轻。除半干旱区雨养农田植被指数对干旱的响应的滞后时间为2个月外,其余滞后时间均为1个月。在滞后时间下,去趋势干旱指数与植被指数异常及总初级生产力异常均呈现显著的正相关关系。相对于雨养农田来说,灌溉分别缓解了32.22%和29.42%北方旱区干旱对农作物植被指数和总初级生产力的消极影响,且在干旱区的缓解程度要高于半干旱区。定量分析了干旱对灌溉和雨养农田生态系统GPP和EVI的影响差异,为评估灌溉抵抗干旱气候对植被生态系统的影响研究提供了参考。

关键词: 标准化降水蒸散指数增强型植被指数总初级生产力干旱区灌溉    
Abstract:

Irrigation is an effective regulation mechanism for crops to response to extreme climatic conditions such as drought. Due to global climate change, the frequency and severity of extreme weather events such as drought are expected to increase in the future, quantitative analysis of the impact of drought on crop growth of farmland ecosystem under irrigation and rain-fed conditions will help to better assess the ability of human beings to cope with the negative impact of extreme climate events on the ecosystem, and provide a basis for formulating reasonable and effective ecosystem protection measures. The dry lands on northern China is taken as the study area. Based on Standardized Precipitation Evapotranspiration Index (SPEI) products and Enhanced Vegetation Index (EVI), Gross Primary Productivity (GPP) products provided by MODIS, this paper analyzes the trends of drought and EVI, GPP of farmland ecosystems in the study area from 2000 to 2014 by using MK trend analysis and explores the lag time of crop productivity response to drought by using Pearson correlation coefficient. Then, the effects of drought on EVI and GPP of farmland ecosystem under the corresponding time lag are analyzed by using linear regression analysis and the differences in the effects of drought on EVI and GPP of irrigated farmland and rain-fed farmland are further compared. Study results indicate during 2000~2014, 64.10% of the study area showed a trend of drought alleviation, and 75.78% and 81.87% of the study area showed a trend of increased EVI and GPP, of which 64.82%, 68.34% of the areas with an increase in EVI, GPP were accompanied by drought alleviation. Expect for the lag time of rain-fed crop EVI in semiarid dry land response to drought was 2 months, all the rest lag time was 1 month. Based on the lag time, the SPEI and EVI, GPP showed a significant positive correlation. Compared to rain-fed farmlands, irrigation alleviated the negative effects of drought on EVI and GPP by 32.22% and 29.42%. The degree of mitigation in arid area is overall higher than that in semi-arid area. This study quantifies the differences of the impact of drought on the GPP and EVI of irrigated and rain fed farmland ecosystems, which provides a reference for the study of the impact of irrigation resistance on vegetation ecosystems.

Key words: SPEI    EVI    GPP    Dry land    Irrigation
收稿日期: 2020-06-22 出版日期: 2021-05-24
ZTFLH:  S162.5+2  
基金资助: 国家重点研发计划项目(2019YFA0606900);国家自然科学基金青年基金项目(41401479)
通讯作者: 朱秀芳     E-mail: liuying_ly@mail.bnu.edu.cn;zhuxiufang@bnu.edu.cn
作者简介: 刘莹(1996-),女,山东临沂人,硕士研究生,主要从事植被生态遥感研究。E?mail: liuying_ly@mail.bnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘莹
朱秀芳
徐昆
陈令仪
郭锐

引用本文:

刘莹,朱秀芳,徐昆,陈令仪,郭锐. 干旱对灌溉和雨养农田生态系统生产力的影响对比分析[J]. 遥感技术与应用, 2021, 36(2): 381-390.

Ying Liu,Xiufang Zhu,Kun Xu,Lingyi Chen,Rui Guo. Comparative Analysis of the Impact of Drought on the Crop Productivity of Irrigated and Rain-fed Farmland Ecosystems. Remote Sensing Technology and Application, 2021, 36(2): 381-390.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.2.0381        http://www.rsta.ac.cn/CN/Y2021/V36/I2/381

图1  北方旱区位置示意图审图号:GS(2015)732
图2  2000~2014年北方旱区农田生态系统的干旱、EVI和GPP的变化趋势空间分布图审图号:GS(2015)732
图3  区域尺度上2000~2014年北方旱区农田生态系统干旱、EVI和GPP变化趋势分析图
趋势线干旱区半干旱区
灌溉农田雨养农田灌溉农田雨养农田
SPEISPEI=0.001 4x-2.646 5SPEI=0.010 2x-20.365 9SPEI=0.016 7x-33.434 4SPEI=0.042 8x-86.034 0
EVI(***)EVI=0.003 5x-6.765 1EVI=0.003 1x-6.081 9EVI=0.003 56x-6.908 2EVI=0.003 60x-7.002 8
GPP(***)GPP=0.525 0x-1 004.243 1GPP=0.461 3x-878.787 2GPP=0.647 6x-1 239.460 7GPP=0.903 4x-1 756.841 7
表 1  区域尺度上2000~2014年北方旱区灌溉农田和雨养农田干旱、EVI和GPP变化趋势

植被

生产力

滞后月份相关系数(干旱区)相关系数(半干旱区)
灌溉农田雨养农田灌溉农田雨养农田
EVI00.54**0.67**0.69**0.77**
10.62**0.80**0.78**0.82**
20.56**0.72**0.75**0.84**
30.50*0.65**0.62**0.75**
40.420.49*0.45*0.42
50.330.430.45*0.42
60.350.460.300.11
GPP00.75**0.77**0.75**0.79**
10.82**0.88**0.87**0.878**
20.66**0.80**0.82**0.876**
30.55*0.72**0.62**0.77**
40.420.49*0.45*0.46*
50.360.440.54*0.46*
60.320.350.27-0.02
表2  不同滞后月份下去趋势干旱指数与植被生产力异常的相关系数
图4  2000~2014年北方旱区农田生态系统去趋势干旱指数与EVI、GPP异常相关系数及线性拟合斜率

植被

生产力

区域相关系数线性拟合斜率
灌溉区雨养区灌溉区雨养区(雨养-灌溉)/雨养
EVI北方旱区0.730.840.0610.09032.22%
干旱区0.620.800.0480.07435.14%
半干旱区0.780.840.0690.08215.85%
GPP北方旱区0.880.913.795.3729.42%
干旱区0.820.882.824.2333.33%
半干旱区0.870.884.245.5423.47%
表3  2000~2014年北方旱区灌溉农田和雨养农田去趋势干旱指数与植被指数异常和总初级生产力异常的相关系数及线性拟合斜率
1 Yin Fei, Mao Renzhao, Fu Bojie, et al. Farmland Ecosystem Service and Its Formation Mechanism[J]. Chinese Journal of Applied Ecology, 2006, 17(5): 929-934.
1 尹飞, 毛任钊, 傅伯杰, 等. 农田生态系统服务功能及其形成机制[J]. 应用生态学报, 2006, 17(5): 929-934.
2 Paustian K, Andrén O, Janzen H H, et al. Agricultural Soils as a Sink to Mitigate CO2 Emissions[J]. Soil Use and Management,2007,13(s4):230-244. doi:10.1111/j.1475-2743. 1997.tb00594.x.
doi: 10.1111/j.1475-2743. 1997.tb00594.x
3 Liu Wenchao, Yan Changzhen, Qin Yuanwei, et al. Cropland Dynamics and Its Influence on the Productivity in Recent 20 Years in Northern Shaanxi,China[J]. Journal of Natural Resources, 2013, 28(8): 101-110.刘文超, 颜长珍, 秦元伟, 等. 近20 a陕北地区耕地变化及其对农田生产力的影响[J]. 自然资源学报. 2013, 28(8): 101-110.
4 Zhao Rongqin, Qin Mingzhou. Temporospatial Variation of Partial Carbon Source/Sink of Farmland Ecosystem in Coastal China[J].Journal of Ecology and Rural Environment,2007,23(2):1-6.赵荣钦,秦明周.中国沿海地区农田生态系统部分碳源/汇时空差异[J].生态与农村环境学报.2007,23(2):1-6.
5 Li Y P, Ye W, Wang M, et al. Climate Change and Drought: A Risk Assessment of Crop-yield Impacts[J]. Climate Research, 2009, 39(1): 31-46. doi: 10.3354/cr00797.
doi: 10.3354/cr00797
6 Hu Y N, Liu Y J, Tang H J, et al. Contribution of Drought to Potential Crop Yield Reduction in a Wheat-maize Rotation Region in the North China Plain[J]. Journal of Integrative Agriculture, 2014, 13(7): 1509-1519. doi: 10.1016/S2095-3119(14)60810-8.
doi: 10.1016/S2095-3119(14)60810-8
7 Anderegg W R L, Berry J A, Field C B. Linking Definitions, Mechanisms, and Modeling of Drought-induced Tree Death[J]. Trends in Plant Science, Elsevier Ltd, 2012, 17(12): 693-700. doi: 10.1016/j.tplants.2012.09.006.
doi: 10.1016/j.tplants.2012.09.006
8 Nepstad D,Lefebvre P,Da Silva U L,et al. Amazon Drought and Its Implications for Forest Flammability and Tree Grow-th: A Basin-wide Analysis[J]. Global Change Biology, 2004,10(5):704-717. doi:10.1111/j.1529-8817.2003.00772.x.
doi: 10.1111/j.1529-8817.2003.00772.x
9 Flexas J. Drought-inhibition of Photosynthesis in C3 Plants: Stomatal and Non-stomatal Limitations Revisited[J]. Annals of Botany,2002,89(2):183-189. doi: 10.1093/aob/mcf027.
doi: 10.1093/aob/mcf027
10 Sangüesa-Barreda G, Camarero J J, Oliva J, et al. Past logging, Drought and Pathogens Interact and Contribute to Forest Dieback[J]. Agricultural and Forest Meteorology, 2015, 208: 85-94. doi: 10.1016/j.agrformet.2015.04.011.
doi: 10.1016/j.agrformet.2015.04.011
11 Zhang Y, Peng C H, Li W Z, et al. Monitoring and Estimating Drought-induced Impacts on Forest[J]. Environmental Review, 2013, 115(April): 103-115. doi: 10.1139/er-2013-0006.
doi: 10.1139/er-2013-0006
12 Zhang Y, Xiao X M, Zhou S, et al. Canopy and Physiological Controls of GPP during Drought and Heat Wave[J]. Geophysical Research Letters,2016,43(7):3325-3333. doi: 10.1002/2016GL068501.
doi: 10.1002/2016GL068501
13 Tian Hanqin, Xu Xiaofeng, Song Xia. Drought Impacts on Terrestrial Ecosystem Productivity[J]. Chinese Journal of Plant Ecology, 2015, 31(2): 231-241.
13 田汉勤, 徐小锋, 宋霞. 干旱对陆地生态系统生产力的影响[J]. 植物生态学报, 2007, 31(2): 231-241.
14 Hu Shi, Mo Xingguo, Lin Zhonghui. Projections of Spatial-temporal Variation of Drought in North China[J]. Arid Land Geography, 2015, 38(2):239-248.
14 胡实, 莫兴国, 林忠辉. 未来气候情景下我国北方地区干旱时空变化趋势[J]. 干旱区地理, 2015, 38(2): 239-248.
15 Dai A G. Increasing Drought under Global Warming in Observations and Models[J]. Nature Climate Change, 2013, 3(2): 52-58. doi: 10.1038/NCLIMATE1633.
doi: 10.1038/NCLIMATE1633
16 Chen S L, Huang Y F, Wang G Q. Detecting Drought-induced GPP Spatiotemporal Variabilities with Sun-induced Chlorophyll Fluorescence during the 2009/2010 Droughts in China[J]. Ecological Indicators, 2021, 121: 107092. doi: 10.1016/j.ecolind.2020.107092.
doi: 10.1016/j.ecolind.2020.107092
17 Chen T, Van Der Werf G R, De Jeu R A M, et al. A Global Analysis of the Impact of Drought on Net Primary Productivity[J]. Hydrology and Earth System Sciences Discussions, 2013, 10(2): 2429-2451. doi: 10.5194/hess-17-3885-2013.
doi: 10.5194/hess-17-3885-2013
18 Deng Y, Wang X H, Wang K, et al. Responses of Vegetation Greenness and Carbon Cycle to Extreme Droughts in China[J]. Agricultural and Forest Meteorology, 2021, 298: 108307. doi: 10.1016/j.agrformet.2020.108307.
doi: 10.1016/j.agrformet.2020.108307
19 Jiang W X, Wang L C, Zhang M, et al. Analysis of Drought Events and Their Impacts on Vegetation Productivity based on the Integrated Surface Drought Index in the Hanjiang River Basin,China[J]. Atmospheric Research,2021,254:105536. doi: 10.1016/j.atmosres.2021.105536.
doi: 10.1016/j.atmosres.2021.105536
20 Pei F S, Li X, Liu X P, et al. Assessing the Impacts of Droughts on Net Primary Productivity in China[J]. Journal of Environmental Management,2013,114:362-371. doi: 10.1016/ j.jenvman.2012.10.031.
doi: 10.1016/ j.jenvman.2012.10.031
21 Wang H Y, He B, Zhang Y F, et al. Response of Ecosystem Productivity to Dry/Wet Conditions Indicated by Different Drought Indices[J]. Science of the Total Environment, 2018, 612: 347-357. doi: 10.1016/j.scitotenv.2017.08.212.
doi: 10.1016/j.scitotenv.2017.08.212
22 Zhang L, Xiao J F, Zhou Y, et al. Drought Events and Their Effects on Vegetation Productivity in China[J]. Ecosphere, 2016, 7(12). doi: 10.1002/ecs2.1591.
doi: 10.1002/ecs2.1591
23 Gallardo M P, Vicente-Serrano S M, Quiring S, et al. Response of Crop Yield to Different Time-scales of Drought in the United States: Spatio-temporal Patterns and Climatic and Environmental Drivers[J]. Agricultural and Forest Meteorology,2019,264:40-55. doi:10.1016/j.agrformet.2018.09.019.
doi: 10.1016/j.agrformet.2018.09.019
24 Liu X F, Pan Y Z, Zhu X F, et al. Drought Evolution and Its Impact on the Crop Yield in the North China Plain[J]. Journal of Hydrology,2018,564:984-996. doi:10.1016/j.jhydrol. 2018.07.077.
doi: 10.1016/j.jhydrol. 2018.07.077
25 Ming Bo, Tao Hongbin, Wang Pu. Impact of Drought on Grain Yield in Beijing Investigated by SPEI-based Methods[J]. 2013, 18(5): 28-36.
25 明博, 陶洪斌, 王璞. 基于标准化降水蒸散指数研究干旱对北京地区作物产量的影响[J]. 2013, 18(5): 28-36.
26 Zipper S C, Qiu J, Kucharik C J. Drought Effects on US Maize and Soybean Production: Spatiotemporal Patterns and Historical Changes[J].Environmental Research Letters, 2016,11(9):094021. doi:10.1088/1748-9326/11/9/094021.
doi: 10.1088/1748-9326/11/9/094021
27 Zhu Xiufang, Zhao Anzhou, Li Yizhan, et al. Impact of Irrigation on Climate[J]. Acta Ecologica Sinica, 2014, 34(17): 4816-4828.
27 朱秀芳,赵安周,李宜展,等.农田灌溉对气候的影响研究综述[J]. 生态学报,2014,34(17):4816-4828.
28 Food and Agriculture Organization of the United Nations. FAO Statistical Year Book-World food and Agriculture[M].Food and Agriculture Organization of United Nations:Rome,Italy,2012.
29 Lu J Y, Carbone G J, Huang X, et al. Mapping the Sensitivity of Agriculture to Drought and Estimating the Effect of Irrigation in the United States, 1950~2016[J]. Agricultural and Forest Meteorology, 2020, 292: 108124. doi: 10.1016/j.agrformet.2020.108124.
doi: 10.1016/j.agrformet.2020.108124
30 Zhang T Y, Mahmood R, Lin X M, et al. Irrigation Impacts on Minimum and Maximum Surface Moist Enthalpy in the Central Great Plains of the USA[J]. Weather and Climate Extremes,2019,23:100197. doi: 10.1016/j.wace.2019.100197.
doi: 10.1016/j.wace.2019.100197
31 Zhu X F, Liang S L, Pan Y Z, et al. Agricultural Irrigation Impacts on Land Surface Characteristics Detected from Satellite Data Products in Jilin Province, China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2011,4(3):721-729. doi:10.1109/JSTARS.2011. 2106152.
doi: 10.1109/JSTARS.2011. 2106152
32 Zhu X F, Liang S L, Pan Y Z. Observational Evidence of the Cooling Effect of Agricultural Irrigation in Jilin, China[J]. Climatic Change,2012,114(3-4):799-811. doi:10.1007/s10584- 012-0435-3.
doi: 10.1007/s10584- 012-0435-3
33 Li X, Troy T J. Changes in Rainfed and Irrigated Crop Yield Response to Climate in the Western US[J]. Environmental Research Letters, 2018, 13(6):064031. doi: 10.1088/1748-9326/aac4b1.
doi: 10.1088/1748-9326/aac4b1
34 Sun H Y, Zhang X Y, Liu X J, et al. Impact of Different Cropping Systems and Irrigation Schedules on Evapotranspiration, Grain Yield and Groundwater Level in the North China Plain[J]. Agricultural Water Management, 2019, 211: 202-209. doi:10.1016/j.agwat.2018.09.046.
doi: 10.1016/j.agwat.2018.09.046
35 Li J W, Liu Z F, He C Y, et al. Are the Drylands in Northern China Sustainable? A Perspective from Ecological Footprint Dynamics from 1990 to 2010[J]. Science of the Total Environment, 2016, 553: 223-231. doi: 10.1016/j.scitotenv.2016.02.088.
doi: 10.1016/j.scitotenv.2016.02.088
36 Millenium Ecosystem Assessment. Ecosystems & Human Well-being: Synthesis[M]. Washington, Island Press, DC:2005.
37 Yang X H, Ci L J, Zhang X S. Dryland Characteristics and Its Optimized Eco-productive Paradigms for Sustainable Development in China[J]. Natural Resources Forum, 2008, 32(3): 215-227. doi: 10.1111/j.1477-8947.2008.00201.x.
doi: 10.1111/j.1477-8947.2008.00201.x
38 Cai Q, Liu Y, Lei Y, et al. Reconstruction of the March-August PDSI since 1703 AD based on Tree Rings of Chinese Pine (Pinus Tabulaeformis Carr.) in the Lingkong Mountain, Southeast Chinese Loess Plateau[J]. Climate of the Past, 2014, 10(2): 509-521. doi: 10.5194/cp-10-509-2014.
doi: 10.5194/cp-10-509-2014
39 Chen H P, Sun J Q. Changes in Drought Characteristics over China Using the Standardized Precipitation Evapotranspiration Index[J]. Journal of Climate, 2015, 28(13): 5430-5447. doi: 10.1175/jcli-d-14-00707.1.
doi: 10.1175/jcli-d-14-00707.1
40 Zhao S H, Cong D M, He K X, et al. Spatial-Temporal Variation of Drought in China from 1982 to 2010 based on a Modified Temperature Vegetation Drought Index (mTVDI)[J]. Scientific Reports, 2017, 7(1): 1-12. doi: 10.1038/s41598-017-17810-3.
doi: 10.1038/s41598-017-17810-3
41 Ministry of Agriculture of the People’s Republic of China. Statistics of New China’s Agriculture in 60 Years[M]. Beijing:China Agriculture Press,2009.
41 中华人民共和国农业部.新中国农业60年统计资料[M].北京:中国农业出版社,2009.
42 Vicente-Serrano S M, Beguería S, López-Moreno J I, et al. A New Global 0.5° Gridded Dataset (1901~2006) of a Multiscalar Drought Index: Comparison with Current Drought Index Datasets based on the Palmer Drought Severity Index[J]. Journal of Hydrometeorology, 2010, 11(4): 1033-1043. doi: 10.1175/2010JHM1224.1.
doi: 10.1175/2010JHM1224.1
43 Zhu X F, Zhu W Q, Zhang J S, et al. Mapping Irrigated Areas in China from Remote Sensing and Statistical Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(11): 4490-4504. doi: 10.1109/JSTARS.2013.2296899.
doi: 10.1109/JSTARS.2013.2296899
44 Vicente-Serrano S M, Beguería S, López-Moreno J I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index[J]. Journal of Climate,2010,23:1696-1718. doi:10.1175/2009JCLI 2909.1.
doi: 10.1175/2009JCLI 2909.1
45 Lanzante J R.Resistant Robust and Non-parametric Techniques for the Analysis of Climate Data: Theory and Examples, including Applications to Historical Radiosonde Station Data[J]. International Journal of Climatology, 2015, 16(11):1197-1226.
46 Papagiannopoulou C,Miralles D G,Decubber S,et al. A Non-linear Granger-causality Framework to Investigate Climate-vegetation Dynamics[J]. Geoscientific Model Development,2017(10):1945-1960. doi:10.5194/gmd-10-1945-2017.
doi: 10.5194/gmd-10-1945-2017
47 Ge Feifan, Mao Kebiao, Jiang Yuelin, et al. Extreme High-temperature in Summer and Its Impacts on Vegetation in East China[J]. Chinese Journal of Agrometeorology,2017,38(1): 42-51.
47 葛非凡,毛克彪,蒋跃林,等.华东地区夏季极端高温特征及其对植被的影响[J].中国农业气象,2017,38(1):42-51.
48 Muller K, O’Connor T G, Henschel J R. Impact of a Severe Frost Event in 2014 on Woody Vegetation within the Nama-Karoo and Semi-arid Savanna Biomes of South Africa[J]. Journal of Arid Environments, 2016, 133: 112-121. doi: 10.1016/j.jaridenv.2016.06.010.
doi: 10.1016/j.jaridenv.2016.06.010
49 Wolf A, Kozlov M V, Callaghan T V. Impact of Non-outbreak Insect Damage on Vegetation in Northern Europe will be Greater than Expected during a Changing Climate[J]. Climatic Change, 2008, 87(1-2): 91-106. doi: 10.1007/s10584-007-9340-6.
doi: 10.1007/s10584-007-9340-6
[1] 侯吉宇,周艳莲,刘洋. 不同叶面积指数遥感数据模拟中国总初级生产力的时空差异[J]. 遥感技术与应用, 2020, 35(5): 1015-1027.
[2] 沈谦,朱长明,张新,黄巧华,杨程子. 1992~2013我国干旱区城市不透水遥感制图与扩张过程分析[J]. 遥感技术与应用, 2020, 35(5): 1178-1186.
[3] 王雅楠,韦瑾,汤旭光,韩旭军,马明国. 应用叶绿素荧光估算植被总初级生产力研究进展[J]. 遥感技术与应用, 2020, 35(5): 975-989.
[4] 陈馨,匡文慧. 基于云平台的中哈干旱区典型城市地表覆盖变化遥感监测与比较[J]. 遥感技术与应用, 2020, 35(3): 548-557.
[5] 冯艾琳,武晋雯,孟莹,姜鹏,董巍,张璇,方缘,刘斌. 基于MODIS GPP数据产品的辽宁省碳源/汇空间格局分布研究[J]. 遥感技术与应用, 2019, 34(4): 857-864.
[6] 王莹莹, 袁金国, 张莹, 吴朝阳. 中国温带地区植被物候期时空变化特征及对总初级生产力的影响[J]. 遥感技术与应用, 2019, 34(2): 377-388.
[7] 庄元, 薛东前, 匡文慧, 迟文峰, 潘涛. 中国半干旱区呼包鄂城市群地表覆盖等级结构时空特征研究[J]. 遥感技术与应用, 2019, 34(1): 197-206.
[8] 苏阳,祁元,王建华,徐菲楠,张金龙. 基于航空高光谱影像的额济纳绿洲土地覆被提取[J]. 遥感技术与应用, 2018, 33(2): 202-211.
[9] 陈栋栋,赵军. 我国西北干旱区湖泊变化时空特征[J]. 遥感技术与应用, 2017, 32(6): 1114-1125.
[10] 马敏娜,袁文平. 青藏高原总初级生产力估算的模型差异[J]. 遥感技术与应用, 2017, 32(3): 406-418.
[11] 于惠,吴玉锋,金毅,张峰. 基于MODIS SWIR数据的干旱区草地地上生物量反演及时空变化研究[J]. 遥感技术与应用, 2017, 32(3): 524-530.
[12] 刘青瑞,居为民,张永光. 日光诱导叶绿素荧光估算中国典型生态系统总初级生产力的能力[J]. 遥感技术与应用, 2017, 32(2): 363-373.
[13] 王定文,黄春林,顾娟. 干旱区地表L波段微波辐射特性分析穿透深度的影响[J]. 遥感技术与应用, 2016, 31(3): 580-589.
[14] 行敏锋,何彬彬. 主被动遥感数据协同估算干旱区草原植被生物量[J]. 遥感技术与应用, 2015, 30(6): 1122-1128.
[15] 韩忻忆,颉耀文. 基于决策树的干旱区湿地信息自动提取—以疏勒河流域为例[J]. 遥感技术与应用, 2015, 30(6): 1146-1152.