Please wait a minute...
img

官方微信

遥感技术与应用  2021, Vol. 36 Issue (3): 638-648    DOI: 10.11873/j.issn.1004-0323.2021.3.0638
遥感应用     
西南山地典型流域地震前后泥石流物源遥感精细识别
李昕娟1,2(),林家元3,胡桂胜1,赵伟1()
1.中国科学院水利部成都山地灾害与环境研究所,四川 成都 610041
2.中国科学院大学,北京 100049
3.西南大学地理科学学院,重庆 400715
Remote Sensing-based Debris Flow Source Area Extraction before and after Earthquake for a Typical Mountain Basin in Southwest China:A Case Study in the Shuzheng Village Basin
Xinjuan Li1,2(),Jiayuan Lin3,Guisheng Hu1,Wei Zhao1()
1.Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu 610041,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
3.School of Geographical Sciences,Southwest University,Chongqing 400715,China
 全文: PDF(7957 KB)   HTML
摘要:

泥石流物源的信息获取目前主要依靠野外勘查测量和目视解译提取,存在耗时费力、覆盖范围有限、主观性强等问题。遥感因其快速、大范围、高精度监测的特点为泥石流物源识别提供了更为可靠的方式。基于Sentinel 2影像和ALOS地形数据,根据物源区光谱特征和地形特征差异,采用面向对象的分类方法进行物源识别,实现了树正寨流域地震前后泥石流崩滑物源、沟道物源和坡面物源的遥感精细识别。实验结果表明:①基于无人机和Google Earth高分辨率影像选取验证样本发现,采用该方法的树正寨流域物源识别精度分别为震前85.71%,震后88.34%,对应的Kappa系数分别为0.77和0.76;②相比于传统基于像元的遥感分类方法,该方法震前和震后分类精度分别高出14.28%和22.70%,尤其对于小面积的崩滑单体识别有着更优秀的表现;③地震前后由于地震诱发崩塌滑坡等灾害导致物源总储量由1.85×106 m3增至3.99×106 m3,主要物源类型是崩滑物源,占比70.80%。总体而言,实验为泥石流物源的判识提供了基于高分辨率遥感影像观测的自动识别方法,判识结果也将为泥石流灾害防治及风险评估提供重要的科学支撑。

关键词: 遥感面向对象方法泥石流物源识别九寨沟地震    
Abstract:

At present, the quantification of debris flow material sources is mainly depended on field survey, which is time-consuming, with limited spatial coverage and strong subjectivity. Comparatively, remote sensing-based detection method provides a more reliable way for extracting areas of debris flow material sources because of its characteristics of frequent observation, large scale coverage and high precision. In this study, we developed an object-oriented classification method to extract the source area based on Sentinel 2 image and ALOS digital elevation model data, according to the spectral and topographic characteristics of the source area. Compared with visual interpretation method, this method was automatically conducted and can identify the type difference of the material sources. Take the Shuzheng village basin as a case study, the method precisely extracted the three key sources for debris flow (slump-mass sources, gully sediments sources and slope wash sources) before and after the earthquake. The results show that: (1) Based on the validation sample points collected from high-resolution images of UAV and Google Earth, the material sources extraction accuracy of the proposed method is 85.71% before the earthquake and 88.34% after the earthquake, and the corresponding Kappa coefficients are 0.77 and 0.76 respectively. (2) Compared with the pixel-based remote sensing classification method, the accuracy of the proposed method before and after the earthquake is 14.28% and 22.70% higher, and it has a better performance, especially for the recognition of small areas of slump-mass. (3) Before and after the earthquake, due to disasters such as collapses and landslides, the total source reserves increased from 1.85 million m3 to 3.99 million m3. The main source type is the slump-mass source, accounting for 70.80%. In general, this study provides a semi-automatic extraction method based on high-resolution remote sensing image for the extraction of debris flow sources, which will provide important scientific support for debris flow disaster prevention and risk assessment.

Key words: Remote sensing    Object-oriented analysis method    Debris flow    Source area extraction    Jiuzhaigou earthquake
收稿日期: 2020-07-06 出版日期: 2021-07-22
ZTFLH:  P316  
基金资助: 四川省重点研发项目(2018SZ0354);国家重点研发计划课题(2018YFC1505202);四川省科技计划项目(2020JDJQ0003);中国科学院青年创新促进会基金项目(2016333)
通讯作者: 赵伟     E-mail: xinjuan@imde.ac.cn;zhaow@imde.ac.cn
作者简介: 李昕娟(1996-),女,云南曲靖人,硕士研究生,主要从事山地灾害与遥感应用研究。E?mail:xinjuan@imde.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李昕娟
林家元
胡桂胜
赵伟

引用本文:

李昕娟,林家元,胡桂胜,赵伟. 西南山地典型流域地震前后泥石流物源遥感精细识别[J]. 遥感技术与应用, 2021, 36(3): 638-648.

Xinjuan Li,Jiayuan Lin,Guisheng Hu,Wei Zhao. Remote Sensing-based Debris Flow Source Area Extraction before and after Earthquake for a Typical Mountain Basin in Southwest China:A Case Study in the Shuzheng Village Basin. Remote Sensing Technology and Application, 2021, 36(3): 638-648.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2021.3.0638        http://www.rsta.ac.cn/CN/Y2021/V36/I3/638

图1  树正寨流域位置及遥感影像图
图2  树正寨流域实地勘察及无人机拍摄现场照片
图3  泥石流物源遥感识别技术流程
图4  树正寨流域泥石流物源识别分层规则集
图5  树正寨流域数据预处理结果与地震前后不同识别方法结果对比
图6  选取验证样本点的震前及震后无人机高分辨率影像
时间物源类别漏分误差/%错分误差/%总体精度/%Kappa系数
面向对象基于像元面向对象基于像元面向对象基于像元面向对象基于像元
震前崩滑物源015.3816.6726.6783.3373.330.660.43
沟道物源9.107.694.7642.8695.2457.140.930.51
坡面物源0017.6217.6582.3582.350.790.79
均值3.037.6913.0229.0685.7171.430.770.54
震后崩滑物源010.9913.1133.6186.8966.400.630.24
沟道物源12.008.334.3552.1795.6547.830.950.44
坡面物源016.6711.1116.6788.8983.330.880.81
均值4.0012.009.5234.1588.3465.640.760.39
表1  树正寨流域地震前后物源识别精度
图7  树正寨流域泥石流物源投影面积与总储量统计图
1 Peng Shixiong, Chen Weidong. A Three-parameter Method for Evaluating Debris Flow Hazards[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1):429-436.
1 彭仕雄, 陈卫东. 泥石流危险性三要素评估方法[J]. 岩石力学与工程学报, 2018, 37(1):429-436.
2 Hu Kaiheng, Cui Peng, You Yong, et al. Influence of Debris Supply on the Activity of Post-quake Debris Flows [J]. The Chinese Journal of Geological Hazard and Control, 2011, 22(1): 4-9.
2 胡凯衡, 崔鹏, 游勇, 等. 物源条件对震后泥石流发展影响的初步分析[J]. 中国地质灾害与防治学报, 2011, 22(1): 4-9.
3 Lu Xuejun, Shi Zhenchun, Shang Weitao, et al. The Method and Application of Multi-dimension Interpretation for Landslides Using High Resolution Remote Sensing Image[J]. Joural of Image and Graphics, 2014, 19(1): 141-149.
3 鲁学军, 史振春, 尚伟涛, 等. 滑坡高分辨率遥感多维解译方法及其应用[J]. 中国图象图形学报, 2014, 19(1): 141-149.
4 Zeng Sen, Wang Lei, Zhou Changrong. Research on Type and Spatial Distribution of Source of Debris Flow in Yingxiu Town[J]. Technology of Soil and Water Conservation, 2015(6): 8-9,18.
4 曾森, 王蕾, 周长蓉. 映秀镇泥石流物源类型及空间分布研究[J]. 水土保持应用技术, 2015(6):8-9,18.
5 Yao Weiyi, Chang Ming, Li Weile. Dynamic Evolution Characteristics of Material of Typical Debris Flow Using Remote Sensing Technology, in Longxi Catchment, Dujiangyan, China[J]. Research of Soil and Water Conservation, 2018, 25(3): 205-209.
5 姚维益, 常鸣, 李为乐. 都江堰龙溪河流域典型泥石流物源演化特征遥感监测[J]. 水土保持研究, 2018, 25(3): 205-209.
6 Tang Yao, Wang Lijuan, Ma Guochao, et al. Emergency Monitoring of High-level Landslide Disasters in Jinsha River Using Domestic Remote Sensing Satellites[J]. Journal of Remote Sensing, 2019, 23(2): 252-261.
6 唐尧, 王立娟, 马国超, 等. 利用国产遥感卫星进行金沙江高位滑坡灾害灾情应急监测[J]. 遥感学报, 2019, 23(2): 252-261.
7 Wang Ruiqi, Wang Xueliang, Liu Haiyang, et al. Identification and Main Controlling Factor Analysis of Collapse and Landslide based on Fine DEM-Taking Jiacha-Langxian Section of Yarlung Zangbo Suture Zone as an Example[J]. Journal of Engineering Geology, 2019, 27(5): 1146-1152.
7 王瑞琪, 王学良, 刘海洋, 等. 基于精细DEM的崩塌滑坡灾害识别及主控因素分析——以雅鲁藏布江缝合带加查—朗县段为例[J]. 工程地质学报, 2019, 27(5): 1146-1152.
8 Liu Chuanzheng. “7.23” Extraordinary Debris Flow Disaster in Kangding, Sichuan[J]. The Chinese Journal of Geological Hazard and Control, 2009, 20(3): 51-51.
8 刘传正. 四川康定“7.23”特大泥石流灾害[J]. 中国地质灾害与防治学报, 2009, 20(3): 51-51.
9 Hu Guisheng, Chen Ningsheng, Li Jun, et al. Research on Dynamic Characteristics and Development Tendency of Debris Flow Near Field Region in Baihetan Hydropower Station, Jinshajiang River[J]. Research of Soil and Water Conservation, 2014, 21(2): 238-245.
9 胡桂胜, 陈宁生, 李俊, 等. 金沙江白鹤滩水电站坝址近场区泥石流运动特征与发展趋势分析[J]. 水土保持研究, 2014, 21(2): 238-245.
10 Cheng Ningsheng, Huang Na. Emergency Investigation on Debris Flow8.8 Disaster in Qiaowo Town, CountyPuge, Sichuan, China[J]. Mountain Research, 2018, 36(3): 482-487.
10 陈宁生, 黄娜. 普格县荞窝镇8.8泥石流灾害应急调查研究[J]. 山地学报, 2018, 36(3): 482-487.
11 Mondini A C, Guzzetti F, Reichenbach P, et al. Semi-automatic Recognition and Mapping of Rainfall Induced Shallow Landslides Using Optical Satellite Images[J]. Remote Sensing of Environment,2011,115(7):1743-1757. doi: 10.1016/j.rse.2011.03.006.
doi: 10.1016/j.rse.2011.03.006
12 Jiann-Yeou R, Jyun-Ping J, Ruey-Juin R. Semiautomatic Object-Oriented Landslide Recognition Scheme from Multisensor Optical Imagery and DEM[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(2): 1336-1349. doi: 10.1109/TGRS.2013. 2250293.
doi: 10.1109/TGRS.2013. 2250293
13 Li Z B, Shi W Z, Myint Soe W, et al. Semi-automated Landslide Inventory Mapping from Bitemporal Aerial Photographs Using Change Detection and Level Set Method[J]. Remote Sensing of Environment, 2016, 175: 215-230. doi: 10.1016/j.rse.2016.01.003.
doi: 10.1016/j.rse.2016.01.003
14 Zhao W, Li A N, Nan X, et al. Postearthquake Landslides Mapping from Landsat-8 Data for the 2015 Nepal Earthquake Using a Pixel-based Change Detection Method[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 10(5): 1758-1768. doi: 10.1109/JSTARS.2017.2661802.
doi: 10.1109/JSTARS.2017.2661802
15 Li Qilun, Zhang Wanchang, Yi Yaning. An Information Extraction Method of Earthquake-induced Landslide: A Case Study of the Jiuzhaigou Earthquake in 2017[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(1): 93-102.
15 李麒崙, 张万昌, 易亚宁. 地震滑坡信息提取方法研究——以 2017 年九寨沟地震为例[J]. 中国科学院大学学报, 2020, 37(1): 93-102.
16 Lin Qigen, Zou Zhenhua, Zhu Yingqi, et al. Object-oriented Detection of Landslides based on the Spectral, Spatial and Morphometric Properties of Landslides[J]. Remote Sensing Technology and Application, 2017, 32(5): 931-937.
16 林齐根, 邹振华, 祝瑛琦, 等. 基于光谱、空间和形态特征的面向对象滑坡识别[J]. 遥感技术与应用, 2017, 32(5): 931-937.
17 Peng Ling, Xu Suning, Mei Junjun, et al. Earthquake-induced Landslide Recognition Using High-resolution Remote Sensing Images[J]. Journal of Remote Sensing, 2017, 21(4): 509-518.
17 彭令, 徐素宁, 梅军军, 等. 地震滑坡高分辨率遥感影像识别[J]. 遥感学报, 2017, 21(4): 509-518.
18 Zeng Zhen, Yang Benyong, Fan Jianrong, et al. Calculating Landscape Surface Area based on the Geology Significance of the Surface Roughness[J]. Remote Sensing Technology and Application, 2014, 29(5): 846-852.
18 曾珍, 杨本勇, 范建容, 等. 基于地表粗糙度地学意义的地表真实面积计算[J]. 遥感技术与应用, 2014, 29(5): 846-852.
19 Baatz M, Schäpe A. An Optimization Approach for High Quality Multi-scale Image Segmentation[C]∥ Beiträge Zum AGIT-Symposium. 2000.
20 Vu Thuy T, Yamazaki F, Matsuoka M. Multi-scale Solution for Building Extraction from LiDAR and Image Data[J]. International Journal of Applied Earth Observation & Geoinformation,2009,11(4):0-289. doi: 10.1016/j.jag.2009.03.005.
doi: 10.1016/j.jag.2009.03.005
21 Zhang X L, Xiao P F, Feng X Z, et al. Toward Evaluating Multiscale Segmentations of High Spatial Resolution Remote Sensing Images[J]. IEEE Transactions on Geoscience & Remote Sensing,2015,53(7):3694-3706. doi:10.1109/TGRS. 2014. 2381632.
doi: 10.1109/TGRS. 2014. 2381632
22 Ma Yanni, Ming Dongping, Yang Haiping. Scale Estimation of Object-oriented Image Analysis based on Spectral-spatial Statistics[J]. Journal of Remote Sensing, 2017, 21(4): 566-578.
22 马燕妮, 明冬萍, 杨海平. 面向对象影像多尺度分割最大异质性参数估计[J]. 遥感学报, 2017, 21(4): 566-578.
23 Liu Jiaodi, Cao Weibin, Pei Zhiyuan, et al. Fuzzy Classification of Arid and Semi-arid Region Features Using Multi-resolution Data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(8): 220-224.
23 刘姣娣, 曹卫彬, 裴志远, 等. 基于多分辨率数据的干旱和半干旱地区地物模糊分类[J]. 农业工程学报, 2012, 28(8): 220-224.
24 Malamud B D, Turcotte D L, Guzzetti F,et al. Landslide Inventories and Their Statistical Properties[J]. Earth Surface Processes & Landforms,2004,29(6):687-711. doi: 10.1002/esp.1064.
doi: 10.1002/esp.1064
25 Fang Qunsheng, Tang Chuan, Wang Yi, et al. A Calculation Method for Predicting Dynamic Reserve and the Total Amount of Material Source of the Debris Flows in the Wenchuan Meizoseismal Area[J]. Journal of Disaster Prevention and Mitigation Engineering,2016,36(6):1008-1014.
25 方群生,唐川,王毅,等. 汶川极震区泥石流动储量与总物源量计算方法研究[J]. 防灾减灾工程学报,2016,36(6):1008-1014.
26 Wang Jikang, Huang Rongjian, Ding Xiuyan,et al. Debris Flow Prevention and Control Engineering Technology[M]. Beijing: China Railway Publishing House, 1996.王继康,黄荣鉴,丁秀燕,等. 泥石流防治工程技术[M]. 北京: 中国铁道出版社, 1996.
27 Hu X D,Hu K H,Tang J B,et al.Assessment of Debris-flow Potential Dangers in the Jiuzhaigou Valley Following the August 8,2017, Jiuzhaigou Earthquake, Western China[J]. Engineering Geology,2019,256:57-66. doi:10.1016/j.enggeo. 2019.05.004.
doi: 10.1016/j.enggeo. 2019.05.004
[1] 罗婕纯一,秦龙君,毛鹏,熊育久,赵文利,高辉辉,邱国玉. 水质遥感监测的关键要素叶绿素a的反演算法研究进展[J]. 遥感技术与应用, 2021, 36(3): 473-488.
[2] 刘鹤,顾玲嘉,任瑞治. 基于无人机遥感技术的森林参数获取研究进展[J]. 遥感技术与应用, 2021, 36(3): 489-501.
[3] 黄艳,郑玮. 基于无线传感器网络的森林生态系统观测试验平台构建[J]. 遥感技术与应用, 2021, 36(3): 502-510.
[4] 廖鸿燕,周小成,黄洪宇. 基于无人机遥感技术的台风灾害倒伏绿化树木检测[J]. 遥感技术与应用, 2021, 36(3): 533-543.
[5] 王淑静,赖佩玉,郝斌飞,马明国,韩旭军. 西南地区2001~2019年森林损失特征遥感监测与时空分析[J]. 遥感技术与应用, 2021, 36(3): 552-563.
[6] 胥鑫,朱迪. 星载差分吸收气压雷达的系统仿真与性能分析[J]. 遥感技术与应用, 2021, 36(3): 594-604.
[7] 高子为,孙伟伟,程朋根,杨刚,孟祥超. 融合高分辨率遥感影像和POI数据的多特征潜在语义信息用于识别城市功能区[J]. 遥感技术与应用, 2021, 36(3): 618-626.
[8] 陈敏,潘佳威,李江杰,徐璐,刘加敏,韩健,陈奕云. 结合VGGNet与Mask R-CNN的高分辨率遥感影像建设用地检测[J]. 遥感技术与应用, 2021, 36(2): 256-264.
[9] 陈妮,应丰,王静,李健. 基于U-Net的高分辨率遥感图像土地利用信息提取[J]. 遥感技术与应用, 2021, 36(2): 285-292.
[10] 林娜,冯丽蓉,张小青. 基于优化Faster-RCNN的遥感影像飞机检测[J]. 遥感技术与应用, 2021, 36(2): 275-284.
[11] 李庆,陈俊杰,李庆亭,李柏鹏,卢凯旋,昝露洋,陈正超. 基于SSD模型的京津冀地区尾矿库检测[J]. 遥感技术与应用, 2021, 36(2): 293-303.
[12] 祝一诺,高婷,王术东,周磊,杜明义. 基于迁移学习再训练模型和高分遥感数据的建筑垃圾自动识别方法[J]. 遥感技术与应用, 2021, 36(2): 314-323.
[13] 帅艳民,杨健,吴昊,邵聪颖,徐辛超,刘明岳,刘涛,梁继. 基于无人机观测的水稻冠层样方多角度反射特点分析[J]. 遥感技术与应用, 2021, 36(2): 342-352.
[14] 邵文静,孙伟伟,杨刚. 高光谱遥感影像纹理特征提取的对比分析[J]. 遥感技术与应用, 2021, 36(2): 431-440.
[15] 杨昊翔,张丽,闫敏,林光辉. 基于高时空分辨率融合影像的红树林总初级生产力遥感估算[J]. 遥感技术与应用, 2021, 36(2): 453-462.