1 |
Wang K C, Dickinson R E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability[J]. Reviews of Geophysics,2012,50:RG2005. DOI:2010.1029/2011RG000373 .
doi: 2010.1029/2011RG000373
|
2 |
Trenberth K E, Fasullo J T, Kiehl J. Earth's global energy budget[J]. Bulletin of the American Meteorological Society Water, 2009,90: 311-324.
|
3 |
Fisher J B, Melton F, Middleton E, et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources[J]. Resources Research,2017,53: 2618-2626.
|
4 |
Guanter L, Zhang Y, Jung M, et al. Global and time-resolved monitoring of crop photosynthesiswith chlorophyll fluorescence[J]. Global and Time-resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescencek,PNAS,2014,111(14):E1327-E1333.
|
5 |
Jackson R D, Reginato R J, Idso S B. Wheat Canopy Temperature:A practical tool for evaluating water requirements [J]. Water Resource Research,1997,13:651-656.
|
6 |
Xu T R, Guo Z X, Liu S M,et al. Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale[J]. Journal of Geophysical Research: Atmospheres, 2018,123(16): 8674-8690.
|
7 |
Jung M, Koirala S, Weber U,et al. The FLUXCOM ensemble of global land-atmosphere energy fluxes[J]. Scientific Data,2019,6:74. DOI:10.1038/s41597-019-0076-8 .
doi: 10.1038/s41597-019-0076-8
|
8 |
Bastiaanssen W G M, Menenti M, Feddes R A,et al. A remote sensing Surface Energy Balance Algorithm for Land (SEBAL) 1. Formulation[J]. Journal of Hydrology, 1998, 212-213:198-212.
|
9 |
Su Z. The Surface Energy Balance System (SEBS) for estimation of the Turbulent Heat Fluxes[J]. Hydrology and Earth Sciences, 2002, 6(1): 85-99.
|
10 |
Monteith J L. Evaporation and environment[J]. Symposia of the Society for Experimental Biology, 1965, 19: 205-234.
|
11 |
Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Monthly Weather Review, 1972, 100: 81-92.
|
12 |
Yao Y J, Liang S L, Li X L,et al. A Satellite-based hybrid algorithm to determine the priestley-taylor parameter for global terrestrial latent heat flux estimation across multiple biomes[J]. Remote Sensing of Environment,2015,165:216-233.
|
13 |
Ma N, Szilagyi J, Zhang Y,et al. Complementary-relationship-based modeling of terrestrial evapotranspiration across China during 1982~2012: Validations and spatiotemporal analyses[J]. Journal of Geophysical Research: Atmospheres,2019,124(8):4326-4351.
|
14 |
Carlson T. An Overview of the triangle method for estimating surface evapotranspiration and soil moisture from satellite imagery[J]. Sensors,2007,7(8):1612-1629.
|
15 |
Tang Ronglin, Wang Shengli, Jiang Yazhen,et al. A review of retrieval of land surface evapotranspiration based on remotely sensed surface temperature versus vegetation index triangular/trapezoidal characteristic space[J]. National Remote Sensing Bulletin, 2021, 25(1):65-82.
|
15 |
唐荣林,王晟力,姜亚珍,等. 基于地表温度—植被指数三角/梯形特征空间的地表蒸散发遥感反演综述[J]. 遥感学报,2021,25(1):65-82.
|
16 |
Xu T R, Bateni S M, Liang S,et al. Estimation of surface turbulent heat fluxes via variational assimilation of sequences of Land Surface Temperatures from Geostationary Operational Environmental Satellites[J]. Journal of Geophysical Research:Atmosphere,2014,119(18):10780-10798.
|
17 |
Rodell M, Famiglietti J S, Chen J, et al. Basin scale estimates of evapotranspiration using GRACE and other observations[J]. Geophysical Research Letters, 2004,31(20). DOI: 10.1029/2004GL020873 .
doi: 10.1029/2004GL020873
|
18 |
Zeng Z, Piao S, Lin X, et al. Global evapotranspiration over the past three decades: estimation based on the water balance equation combined with empirical models[J]. Environmental Research Letters, 2012,7(1):014026. DOI: 10.1088/1748-9326/7/1/014026 .
doi: 10.1088/1748-9326/7/1/014026
|
19 |
Wang K, Liang S. An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, Vegetation Index, temperature, and Soil Moisture[J]. Journal of Hydrometeorol, 2008,9(4):712-727.
|
20 |
Yao Y J, Liang S L, Li X L,et al. Bayesian Multi-model Estimation of Global Terrestrial Latent Heat Flux from Eddy Covariance,Meteorological,and Satellite Observations[J]. Journal of Geophysical Research-atmospheres,2014,119:4521-4545.
|
21 |
Li Xiaoyuan, Yu Deyong. Progress on evapotranspiration estimation methods and driving forces in arid and semiarid regions[J]. Arid Zone Research, 2020, 37(1):26-36.
|
21 |
李晓媛, 于德永. 蒸散发估算方法及其驱动力研究进展[J]. 干旱区研究, 2020, 37(1): 26-36.
|
22 |
Kustas W, Anderson M. Advances in thermal infrared remote sensing for land surface modeling[J]. Agricultural and Forest Meteorology, 2009, 149(12): 2071-2081.
|
23 |
Xing Xiaozhou. Estimating evaportranspiration using quantitative parameters derived from remote sensin[D].Beijing: Institute of Remote Sensing Applications, Chinese Academy of Sciences, 2003.
|
23 |
辛晓洲. 用定量遥感方法计算地表蒸散[D]. 北京: 中国科学院遥感应用研究所,2003.
|
24 |
Feng Jingze. Mechanism of reference dry and wet limits in remote sensing evapotranspiration model: Study and application[D]. Beijing: Tsinghua University, 2012.
|
24 |
冯景泽. 遥感蒸散发模型参照干湿限机理及其应用研究[D]. 北京:清华大学, 2012.
|
25 |
Li Z L, Tang R, Wan Z, et al. A Review of current methodologies for regional evapotranspiration estimation from remotely sensed data[J]. Sensors, 2009, 9(5): 3801-3853.
|
26 |
Liou Y A, Kar S K. Evapotranspiration estimation with remote sensing and various surface energy balance algorithms-A review[J]. Energies, 2014, 7(5): 2821-2849.
|
27 |
Gao Yanchun, Long Di. Progress in models for evapotranspiration estimation using remotely sensed data[J]. Jouranl of Remote Sensing, 2008,12(3):515-528.
|
27 |
高彦春, 龙笛. 遥感蒸散发模型研究进展[J]. 遥感学报,2008,12(3):515-528.
|
28 |
Yao Yunjun, Cheng Jie, Zhao Shaohua,et al. Estimation of farmland evapotranspiration: A review of methods using thermal infrared remote sensing data[J]. Advances in Earth Science,2012,27(12):1308-1318.姚云军, 程洁, 赵少华, 等. 基于热红外遥感的农田蒸散估算方法研究综述[J]. 地球科学进展, 2012,27(12): 1308-1318.
|
29 |
Shuttleworth W J, Wallace J S. Evaporation from sparse crops-an energy combination theory[J]. Quarterly Journal of the Royal Meteorological Society, 1985, 111(469): 839-855.
|
30 |
Norman J M, Kustas W P, Humes K S. A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature[J]. Agricultural and Forest Meteorology, 1995, 77(3-4): 263-293.
|
31 |
Bastiaanssen W, Noordman E, Pelgrum H, et al. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions[J]. Journal of Irrigation and Drainage Engineering, 2005, 131(1): 85-93.
|
32 |
Allen R, Irmak A, Trezza R, et al. Satellite-based ET estimation in agriculture using SEBAL and METRIC[J]. Hydrological Processes, 2011, 25(26): 4011-4027.
|
33 |
Zhou Yanzhao, Zhou Jian, Li Yan,et al. Simulating the evapotranspiration with SEBAL and Modified SEBAL (M-SEBAL) models over the desert and oasis of the middle reaches of the Heihe River[J]. Journal of Glaciology and Geocryology,2014,36(6): 1526-1537.
|
33 |
周彦昭,周剑,李妍,等 . 利用 SEBAL 和改进的 SEBAL 模型估算黑河中游戈壁、绿洲的蒸散发[J]. 冰川冻土,2014,36(6): 1526-1537.
|
34 |
Timmermans W J, Kustas W P, Anderson M C, et al. An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance(TSEB) modeling schemes[J]. Remote Sensing of Environment, 2007, 108(4): 369-384.
|
35 |
Paul G, Gowda P H, Vara Prasad P V, et al. Investigating the influence of roughness length for heat transport (zoh) on the performance of SEBAL in semi-arid irrigated and dryland agricultural systems[J]. Journal of Hydrology,2014,509:231-244.
|
36 |
Allen R G, Tasumi M, Morse A, et al. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) - Applications[J]. Journal of Irrigation and Drainage Engineering-Asce,2007,133(4):395-406.
|
37 |
Morton C G, Huntington J L, Pohll G M, et al. Assessing calibration uncertainty and automation for estimating evapotranspiration from agricultural areas using METRIC[J]. Journal of the American Water Resources Association,2013,49(3): 549-562.
|
38 |
Allen R G, Burnett B, Kramber W, et al. Automated calibration of the METRIC‐Landsat evapotranspiration process[J]. JAWRA Journal of the American Water Resources Association, 2013,49(3):563-576.
|
39 |
Long D, Singh V P. A Modified Surface Energy Balance algorithm for land (M-SEBAL) based on a trapezoidal framework[J]. Water Resources Research, 2012, 48(2):1-24.
|
40 |
Gokmen M, Vekerdy Z, Verhoef A, et al. Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions[J]. Remote Sensing of Environment, 2012, 121: 261-274.
|
41 |
Anderson M C, Norman J M, Diak G R, et al. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing[J]. Remote Sensing of Environment, 1997, 60(2): 195-216.
|
42 |
Long D, Singh V P. A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery[J]. Remote Sensing of Environment,2012,121:370-88.
|
43 |
Yang Y, Shang S. A hybrid dual-source scheme and trapezoid framework-based evapotranspiration model (HTEM) using satellite images: Algorithm and model test[J].Journal of Geophysical Research-Atmospheres,2013,118(5):2284-300.
|
44 |
Hu G, Jia L. Monitoring of evapotranspiration in a semi-zrid inland river basin by combining microwave and optical remote sensing observations[J]. Remote Sensing, 2015, 7(3): 3056-3087.
|
45 |
Xin X Z, Liu Q H. The Two-layer Surface Energy Balance Parameterization Scheme(TSEBPS) for estimation of land surface heat fluxes[J].Hydrology and Earth System Science,2010,14(3):491-504.DOI:10.5194/hess-14-491-2010 .
doi: 10.5194/hess-14-491-2010
|
46 |
Song L S, Liu S M, Kustas W P,et al. Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures[J]. Agricultural and Forest Meteorology,2016,230-231: 8-19. DOI: 10.1016/j.agrformet.2016.01.005 .
doi: 10.1016/j.agrformet.2016.01.005
|
47 |
Song L S, Kustas W P, Liu S M, et al. Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions[J]. Journal of Hydrology,2016,540:574-587. DOI: 10.1016/j.jhydrol.2016.06.034 .
doi: 10.1016/j.jhydrol.2016.06.034
|
48 |
Anderson M C, Norman J M, Mecikalski J R,et al. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1.Model formulation[J]. Journal of Geophysical Research,2007,112: D10117.
|
49 |
Fisher J B, Lee B, Purdy A J,et al. ECOSTRESS:NASA's Next generation mis-sion to measure evapotranspiration from the international space station[J].Water Resources Research,2020,56(4): e2019WR026058.1~e2019WR029058.20.
|
50 |
Penman H L. Natural Evaporation from Open Water, Bare Soil and Grass[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1948, 193(1032): 120-145.
|
51 |
Cleugh H A, Leuning R, Mu Q, et al. Regional evaporation estimates from flux tower and MODIS satellite data[J]. Remote Sensing of Environment, 2007, 106(3): 285-304.
|
52 |
Mu Q, Heinsch F A, Zhao M, et al. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data[J]. Remote Sensing of Environment, 2007, 111(4): 519-536.
|
53 |
Mu Q, Zhao M, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J].Remote Sen-sing of Environment, 2011, 115(8): 1781-1800.
|
54 |
Cui Y K, Jia L. A Modified Gash Model for Estimating Rainfall Interception Loss of Forest Using Remote Sensing Observations at Regional Scale[J]. Water, 2014, 6(4): 993-1012.
|
55 |
Zhang K, Kimball J S, Nemani R R,et al . A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006[J]. Water Resources Research,2010,46 (9): W9522.
|
56 |
Miralles D G, Holmes T R H, De Jeu Ra M, et al. Global land-surface evaporation estimated from satellite-based observations[J]. Hydrology & Earth System Sciences,2011, 15(2): 453-469.
|
57 |
Miralles D G, Jiménez C, Jung M, et al. The WACMOS-ET project & ndash; Part 2: Evaluation of global terrestrial evaporation data sets. Hydrology and Earth System Sciences 2016,20: 823-842.
|
58 |
Ershadi A, Mc Cabe M F, Evans J P, et al. Multi-site evaluation of terrestrial evaporation models using FLUXNET data[J]. Agricultural and Forest Meteorology,2014,187:46-61.
|
59 |
Zhang K, Ma J, Zhu G, et al. Parameter sensitivity analysis and optimization for a satellite-based evapotranspiration model across multiple sites using Moderate Resolution Imaging Spectroradiometer and flux data[J]. Journal of Geophysical Research: Atmospheres,2017,122: 230-245.
|
60 |
Bouchet R J. Evapotranspiration réelle et potentielle,signification climatique[J]. IAHS Publication,1963,62: 134-142.
|
61 |
Granger RJ. A complementary relationship approach for evaporation from nonsaturated surfaces[J]. Journal of Hydrology, 1980,111(1-4): 31-38.
|
62 |
Brutsaert W, Stricker H. An advection-aridity approach to estimate actual regional evapotranspiration[J]. Water Resources Research, 1979,15(2): 443-450.
|
63 |
Morton F I. Estimating evaporation and transpiration from climatological observations[J]. Journal of Applied Meteorology and Climatology, 1975,14(4): 488-497.
|
64 |
Venturini V, Islam S, Rodrigue Z L. Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model[J]. Remote Sensing of Environment, 2008,112(1): 132-141.
|
65 |
Liu Shaomin, Sun Rui, Sun Zhongping, et al. Comparison of regional evtranspiration estimation models based on complementary correlation principle[J]. Acta Geographica Sinic, 2004, 59(3): 331-340.
|
65 |
刘绍民,孙睿,孙中平,等 .基于互补相关原理的区域蒸散量估算模型比较[J]. 地理学报,2004,59(3):331-340.
|
66 |
Tang R, Li Z L, Tang B. An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation[J]. Remote Sensing of Environment, 2010, 114(3): 540-551.
|
67 |
Zhang Renhua, Sun Xiaomin, Wang Weimin, et al. Physical basis of an operational two-layer remote sensing model for quantitative land surface flux at regional scale[J]. Scientia Sinica(Terrae),2004,34(Sup.2):200-216.
|
67 |
张仁华, 孙晓敏, 王伟民, 等. 一种可操作的区域尺度地表通量定量遥感二层模型的物理基础[J]. 中国科学(D辑:地球科学),2004,34(): 200-216.
|
68 |
Jiang L, Islam S. Estimation of surface evaporation map over southern Great Plains using remote sensing data[J]. Water Resources Research, 2001, 37(2): 329-340.
|
69 |
Long D, Singh V P, Scanlon B R. Deriving theoretical boundaries to address scale dependencies of triangle models for eva-potranspiration estimation[J].Journal of Geophysical Resear-ch-Atmospheres,2012,117:17.DOI:10.1029/2012JD017763 .
doi: 10.1029/2012JD017763
|
70 |
Zhu W, Jia S, Lü A. A time domain solution of the Modified Temperature Vegetation Dryness Index (MTVDI) for continuous soil moisture monitoring[J]. Remote Sensing of Environment, 2017,200:1-17.
|
71 |
Li Xin, Huang Chunlin, Che Tao, et al. Progress and prospect of land surface data assimilation system in China[J]. Advances in Natural Science, 2007,17(2): 163-173.
|
71 |
李新, 黄春林, 车涛, 等. 中国陆面数据同化系统研究的进展与前瞻[J]. 自然科学进展, 2007,17(2): 163-173.
|
72 |
Li Xin, Huang Chunlin. Data assimilation is a new way to integrate multi-source geospatial data[J]. Science & Technology Review, 2004(12): 13-16.
|
72 |
李新, 黄春林. 数据同化—一种集成多源地理空间数据的新思路[J]. 科技导报, 2004(12): 13-16.
|
73 |
Liang S, Li X, Xie X. Land Surface Observation, Modeling and Data Assimilation[M].Singapore:World Scientific,2013.
|
74 |
Ma Jianwen, Qin Sixian. Recent advances and development of data assimilation algorithms[J]. Advances in Earth Science,2012,27(7):747-757.
|
74 |
马建文, 秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展, 2012,27(7): 747-757.
|
75 |
Huang C L, Li X, Wang J M, et al. Assimilation of remote sensing data products into common land model for evapotranspiration forecasting[C]∥ Proceedings of the 8th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences,2008, Vol I: 234-241.
|
76 |
Xu T R, Liang S L, Liu S M,et al. Estimating turbulent fluxes through assimilation of geostationary operational environmental satellites data using ensemble Kalman filter[J].Journal of Geophysical Research: Atmospheres,2011,116(D9):D09109.
|
77 |
Wang Tong, Tang Ronglin, Li Zhaoliang, et al. Temporal upscaling methods for daily evapotranspiration estimation from remotely sensed instantaneous observations[J]. Journal of Remote Sensing, 2019,23(5):813–830.
|
77 |
王桐, 唐荣林, 李召良, 等. 遥感反演蒸散发的日尺度扩展方法研究进展[J]. 遥感学报,2019,23(5):813-830.
|
78 |
Brutsaert W, Sugita M. Application of self‐preservation in the diurnal evolution of the surface energy budget to determine daily evaporation[J]. Journal of Geophysical Research: Atmospheres, 1992,97(D17): 18377–18382. DOI: 10.1029/92JD00255 .
doi: 10.1029/92JD00255
|
79 |
Gentine P, Entekhabi D, Polcher J. The diurnal behavior of evaporative fraction in the soil-vegetation-atmospheric boundary layer continuum[J]. Journal of Hydrometeorology,2011,12(6): 1530–1546. DOI: 10.1175/2011JHM1261.1 .
doi: 10.1175/2011JHM1261.1
|
80 |
Farah H O, Bastiaanssen W G M, Feddes R A. Evaluation of the temporal variability of the evaporative fraction in a tropical watershed[J]. International Journal of Applied Earth Observation and Geoinformation,2004,5(2):129-140. DOI: 10.1016/j.jag.2004.01.003 .
doi: 10.1016/j.jag.2004.01.003
|
81 |
Trezza R. Evapotranspiration using a satellite-based surface energy balance with standardized ground control[R]. Logan, UT: Utah State University,2002: 339.
|
82 |
Tang R L, Li Z L, Huo X, et al. A reexamination of two methods for estimating daily evapotranspiration from remotely sensed instantaneous observations[J]. International Journal of Remote Sensing, 2019,40(5/6): 1981-1995.
|
83 |
Jiang Y Z, Tang R L, Jiang X G et al. Impact of clouds on the estimation of daily evapotranspiration from MODIS-derived instantaneous evapotranspiration using the constant global shortwave radiation ratio method[J]. International Journal of Remote sensing, 2019,40(5/6): 1930-1944.
|
84 |
Li Jia, Xin Xiaozhou, Peng Zhiqing,et al.Remote Sensing Pro-ducts of Terrestrial Evapotranspiration:Comparison and Outlook[J].Remote Sensing Technology and Application,2021,36(1):103-120.
|
84 |
李佳,辛晓洲,彭志晴,等. 地表蒸散发遥感产品比较与分析[J].遥感技术与应用,2021,36(1):103-120.
|
85 |
Jia Z Z, Liu S M, Xu Z W,et al. Validation of remotely sensed evapotranspiration over the Hai River Basin, China[J]. Journal of Geophysical Research: Atmospheres,2012,117(D13): D13113. DOI: 10.1029/2011jd017037 .
doi: 10.1029/2011jd017037
|
86 |
Zhang Yuan, Jia Zhenzhen, Liu Shaomin, et al. Advances in validation of remotely sensed land surface evapotranspiration[J]. Journal of Remote Sensing,2020,24(8):975-999.
|
86 |
张圆, 贾贞贞,刘绍民, 等. 遥感估算地表蒸散发真实性检验研究进展[J]. 遥感学报, 2020,24(8): 975-999.
|
87 |
Vinukollu R K, Wood E F, Ferguson C R,et al. Global estimates of evapotranspiration for climate studies using multisensor remote sensing data: Evaluation of three process-based approaches[J]. Remote Sensing of Environment, 2011,115(3): 801-823. DOI: 10.1016/j.rse.2010.11.006 .
doi: 10.1016/j.rse.2010.11.006
|
88 |
Zhong Yulong, Zhong Min, Feng Wei,et al.Evaluation the evapotranspiration in the West Liaohe River Basin based on GRACE satellite and in situ measurements[J].Geomatics and Information Science of Wuhan University,2020,45(2):173-178.
|
88 |
钟玉龙, 钟敏, 冯伟, 等. 联合GRACE重力卫星与实测资料估计西辽河流域蒸散发量[J]. 武汉大学学报(信息科学版), 2020,45(2):173-178.
|
89 |
Mueller B, Seneviratne S I, Jimenez C,et al. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations[J]. Geophysical Research Letters, 2011,38(6): L06402. DOI: 10.1029/2010gl046230 .
doi: 10.1029/2010gl046230
|
90 |
Zhang Renhua. Key scientific issues of quantitative remote Sensing[M]. Beijing: Higher Education Press,2016:16-23.
|
90 |
张仁华. 定量遥感若干关键科学问题研究[M]. 北京: 高等教育出版社,2016: 16-23.
|
91 |
Miralles D G, Jiménez C, Jung M,et al. The WACMOS-ET project-Part 2: Evaluation of global terrestrial evaporation data sets[J]. Hydrology and Earth System Sciences,2016,20(2): 823-842. DOI: 10.5194/hess-20-823-2016 .
doi: 10.5194/hess-20-823-2016
|
92 |
Xu T R, Guo Z X, Xia Y L, et al. Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States[J]. Journal of Hydrology,2019,578: 124105. DOI: 10.1016/j.jhydrol.2019.124105 .
doi: 10.1016/j.jhydrol.2019.124105
|
93 |
Jiang C, Ryu Y. Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator(BESS)[J]. Remote Sensing of Environment,2016,186:528-547.
|
94 |
Jung M, Reichstein M, Ciais P,et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010, 467: 951–954.
|
95 |
Zhang Y Q, Kong D D, Rong G,et al. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002~2017[J]. Remote Sensing of Environment,2019,222:165-182.
|
96 |
Senay G B, Bohms S, Singh R,et al. Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach[J]. Journal of American Water Resources Research,2013,49:577-591.
|
97 |
Wu Bingfang, Xiong Jun, Yan Nana, et al. ETWatch for monitoring regional evapotranspiration with remote sensing[J]. Advances in Water Science, 2008,19(5):671-678.
|
97 |
吴炳方,熊隽,闫娜娜,等. 基于遥感的区域蒸散量监测方法—ETWatch[J]. 水科学进展,2008,19(5):671-678.
|
98 |
Chen X, Su Z, Ma Y, Liu S,et al. Development of a 10-year (2001-2010) 0.1° data set of land-surface energy balance for mainland China[J]. Atmospheric Chemistry and Physics,2014(23): 13097-13117.
|
99 |
Ghilain N, Arboleda A, Gellens-Meulenberghs F. Evapotranspiration modelling at large scale using near-real time MSG SEVIRI derived data[J]. Hydrology & Earth System Sciiences, 2011, 15: 771-786.
|
100 |
Ma Y, Liu S, Song L,et al. Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data[J]. Remote Sensing of Environment,2018, 216:715-734.
|
101 |
Gebremichael M, Wang J M, Sammis T W. Dependence of remote sensing evapotranspiration algorithm on spatial resolution[J]. Atmospheric Research, 2010,96(4):489-495. DOI: 10.1016/j.atmosres. 2009.12.003 .
doi: 10.1016/j.atmosres. 2009.12.003
|
102 |
Zhou Ti, Peng Zhiqing, Xin Xiaozhou,et al. Remote sensing research of evapotranspiration over heterogeneous surfaces: A review[J]. Journal of Remote Sensing, 2016,20(2): 257–277.
|
102 |
周倜, 彭志晴, 辛晓洲,等. 非均匀地表蒸散遥感研究综述[J]. 遥感学报,2016,20(2): 257-277.
|
103 |
Ogle K, Lucas R W, Bentley L P,et al. Differential daytime and night-time stomatal behavior in plants from North American deserts[J]. New Phytologist, 2012,194: 464–476.
|
104 |
Liu F, Li X.Formulation of scale transformation in a stochastic data assimilation framework[J]. Nonlinear Processes in Geophysics,2017,24(2):279-291.DOI:10.5194/npg-24-279-2017 .
doi: 10.5194/npg-24-279-2017
|
105 |
Zhao W L, Gentine P, Reichstein M,et al. Physics-constrained machine learning of evapotranspiration[J]. Geophysical Research Letters,2019,46(24): 14496-14507.
|