Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (6): 1504-1512    DOI: 10.11873/j.issn.1004-0323.2022.6.1504
遥感应用     
湟水流域2000—2019年植被变化趋势特征和延续性分析
王蕊1(),拜得珍1,尹芳2,刘磊3()
1.青海省环境科学研究设计院有限公司,青海 西宁 810000
2.长安大学 土地工程学院,陕西 西安 710054
3.长安大学 地球科学与资源学院,陕西 西安 710054
Trends and Continuity Analysis of Vegetation Change in Huangshui River Basin from 2000 to 2019
Rui Wang1(),Dezhen Bai1,Fang Yin2,Lei Liu3()
1.Qinghai Research and Design institute of Environmental Sciences,Xining 810000,China
2.School of Land Engineering,Chang’an University,Xi’an 710054,China
3.School of Earth Sciences and Resources,Chang’an University,Xi’an 710054,China
 全文: PDF(4316 KB)   HTML
摘要:

植被的变化特征是流域生态监测的重要内容和环境保护最为关键的信息。利用MODIS EVI数据产品和Hurst指数,分析2000—2019年湟水流域植被的时空变化趋势及其趋势的延续性。结合气温、降水等气象观测数据,分析湟水流域9个县区植被变化的影响因素。研究结果表明:从2000年至2019年间,湟水流域植被EVI最大值年均增幅为0.0063,受气温、降水、土地利用等因素的不同影响,上、中、下游的不同县区表现出不同的变化特征。对于年EVI最大值,下游的增加趋势均最为显著,河道地区变化剧烈程度更加明显。Hurst指数分析表明这种变化趋势短期内具有一定的延续性。本研究通过监测植被时序变化,揭示了高原流域地区植被监测趋势的重要性,为流域管理和可持续性发展提供了一定的数据支撑和科学依据。

关键词: 环境因子植被覆盖度EVIGoogle Earth Engine    
Abstract:

Vegetation change characteristics are the important contents of watershed ecological monitoring and the most critical information for environmental protection. In this study, MODIS EVI data products and Hurst index were used to analyze the temporal and spatial variation trend of vegetation in Huangshui River Basin from 2000 to 2019 and its continuity analysis. Combined with the meteorological observation data of temperature and precipitation, this paper analyzed the influencing factors of vegetation change in 9 counties and districts in Huangshui River Basin. The results show that from 2000 to 2019, the maximum annual EVI increase of vegetation in the Huangshui River Basin is 0.0063, and different counties and districts in the upper, middle and lower reaches show different change characteristics under the influence of temperature, precipitation, land use and other factors. For the annual EVI maximum, the increasing trend of the downstream is the most significant, and the change intensity of the river channel area is more obvious. Based on Hurst index analysis, the trend has a certain continuity in the short term. This study revealed the importance of vegetation monitoring trends in the plateau watershed by monitoring the temporal changes of vegetation, and provided a certain data support and scientific basis for watershed management and sustainable development.

Key words: Remote sensing    Fractional vegetation cover    EVI    Google Earth Engine
收稿日期: 2021-04-07 出版日期: 2023-02-15
ZTFLH:  TP79  
基金资助: 青海省重大科技专项(2018-SF-A4);国家自然科学基金项目(42071258);中央高校基本科研业务费专项资金(300102270204)
通讯作者: 刘磊     E-mail: 474799945@qq.com;liul@chd.edu.cn
作者简介: 王 蕊(1991-),女,青海西宁人,工程师,主要从事环境规划和环境科研等技术工作。E?mail:474799945@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王蕊
拜得珍
尹芳
刘磊

引用本文:

王蕊,拜得珍,尹芳,刘磊. 湟水流域2000—2019年植被变化趋势特征和延续性分析[J]. 遥感技术与应用, 2022, 37(6): 1504-1512.

Rui Wang,Dezhen Bai,Fang Yin,Lei Liu. Trends and Continuity Analysis of Vegetation Change in Huangshui River Basin from 2000 to 2019. Remote Sensing Technology and Application, 2022, 37(6): 1504-1512.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.6.1504        http://www.rsta.ac.cn/CN/Y2022/V37/I6/1504

图1  湟水流域2018年土地利用图
图2  2000年与2019年湟水流域年EVI最大值分布图
图3  湟水流域2000—2019年年EVI最大值变化趋势分布图与判定系数R2分布图
上游中游下游
变化趋势海晏湟源西宁大通湟中乐都互助民和平安
明显减少(k<-0.005)1.621.434.351.393.371.202.131.111.18
轻微减少(-0.005≤k<-0.001)4.714.786.176.455.035.915.285.616.28
稳定不变(-0.001≤k<0.001)34.6031.2041.3222.3626.6713.7121.6223.6213.29
轻微增加(0.001≤k<0.005)47.3749.1941.2145.4436.8156.8749.3348.3353.63
明显增加(k≥0.005)11.7015.406.9524.3628.1222.3122.6323.3325.62
表1  2000—2019年湟水流域9个县区植被覆盖分级变化趋势的面积百分比/% (Unit:%)
图4  2000—2019年湟水流域上中下游9个县区植被年EVI最大值与变化趋势
统计指标植被覆盖区年均最低气温年均最高气温
EVI年最大值海晏0.429*0.073
湟源0.2130.206
湟中0.1080.005
大通0.1280.571**
西宁0.1410.483*
互助0.1090.288
平安0.0050.629**
乐都0.2010.881**
民和0.0350.689**
表2  湟水流域各区域年最大化EVI均值与气象要素的相关系数
图5  湟水流域Hurst指数值分布图
变化趋势上 游 中 游 下 游
湟源海晏西宁大通湟中乐都互助民和平安
变化趋势最小值-0.022 4-0.025 6-0.037 1-0.031 2-0.039 6-0.032 8-0.042 0-0.027 7-0.038 8
变化趋势最大值0.025 70.021 10.022 90.020 80.023 50.021 60.020 10.025 90.022 9
变化趋势均值0.003 20.003 10.003 60.002 20.002 50.006 30.003 10.008 90.005 2
变化趋势标准差0.003 50.003 00.010 20.002 90.005 40.004 80.004 80.005 40.005 7
H指数均值0.515 20.517 60.635 70.504 70.530 10.523 00.521 00.506 10.567 5
表3  2000—2019年湟水流域9个县区植被分级变化趋势的面积百分比
1 Li Xin, Liu Shaomin, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in Heihe River Basin[J]. Advances in Earth Science, 2012, 27(5):481-498.
1 李新, 刘绍民, 马明国, 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5):481-498.
2 Ma Huijuan, Gao Xiaohong, Gu Xiaotian. Research on land use/land cover classification in complex topography based on random forest method[J]. Journal of Geo-Information Science,2019,21(3):359-371.
2 马慧娟,高小红,谷晓天.随机森林方法支持的复杂地形区土地利用/土地覆被分类研究[J].地球信息科学学报,2019,21(3):359-371.
3 Shi Feifei, Gao Xiaohong, Yang Lingyu, et al. Study on classification of typical crops in Huangshui watershed based on HJ-1A hyperspectral remote sensing data[J]. Remote Sensing Technology and Application,2017,32(2):206-217.
3 史飞飞,高小红,杨灵玉,等.基于HJ-1A高光谱遥感数据的湟水流域典型农作物分类研究[J].遥感技术与应用,2017,32(2):206-217.
4 He Xiaohui, Wang Fang, Gong Jiaguo, et al. Study on regional hydrological change in Xining section of Huangshui River under climate change[J]. Yellow River,2015,37(9):11-13,16.
4 赫晓慧,王芳,龚家国,等.气候变化下湟水河西宁段区域水文变化研究[J].人民黄河,2015,37(9):11-13,16.
5 Ye Peilong, Zhang Qiang, Wang Ying, et al. Climate change and its effects on ecological vegetation and runoff in the upper reaches of the Yellow River during 1980—2018[J].Acta Scien-tiae Atmosphere Sinica,2020,43(6):967-979.
5 叶培龙,张强,王莺,等.1980—2018年黄河上游气候变化及其对生态植被和径流量的影响[J].大气科学学报,2020,43(6):967-979.
6 Zhang Tiafeng, Zhu Xide, Wang Yongjian, et al. Quantitative assessment of the impacts of climate change and human activities on runoff in the Huangshui River Basin[J]. Resources Science,2014,36(11):2256-2262.
6 张调风,朱西德,王永剑,等.气候变化和人类活动对湟水河流域径流量影响的定量评估[J].资源科学, 2014,36(11):2256-2262.
7 Cai Chunling. Case study on environmental risk of construction project[J]. Industrial Safety and Environmental Protection,2010,36(8):26-28.
7 蔡春玲.建设项目环境风险实例分析[J].工业安全与环保,2010,36(8):26-28.
8 Li Xupu, Zhang Fuping, Wei Yongfen, et al. Research on dynamic changes of the vegetation coverage levels in Heihe River Basin[J]. Areal Research & Development, 2013, 32(3):108-114.
8 李旭谱, 张福平, 魏永芬, 等. 黑河流域植被覆盖程度变化研究[J]. 地域研究与开发, 2013, 32(3):108-114.
9 Han Huibang, Ma Mingguo, Yan Ping. Periodicity analysis of NDVI time series and its relationship with climatic factors in the Heihe River Basin in China[J]. Remote Sensing Technology and Application, 2011, 26(5): 554-560.
9 韩辉邦, 马明国, 严平. 黑河流域 NDVI 周期性分析及其与气候因子的关系[J]. 遥感技术与应用, 2011, 26(5): 554-560.
10 Han Huibang, Ma Mingguo, Ma Shoucun, et al. Vegetation change and its climatic driving factors in Qinghai Province in recent 30 years[J].Arid Land Research,2017,34(5):1164-1174.
10 韩辉邦,马明国,马守存,等. 近30 a青海省植被变化及其气候驱动因子分析[J].干旱区研究,2017,34(5):1164-1174.
11 Du Mei, Zhao Jianyong. Spatiotemporal variation characteristics of vegetation cover in Huangshui River Basin based on MODIS NDVI[J]. Journal of Qinghai University, 2020, 38(6):77-84
11 杜梅,赵健赟.基于MODIS NDVI的湟水流域植被覆盖时空变化特征分析[J].青海大学学报,2020,38(6):77-84.
12 Liu X, Hu G, Chen Y, et al. High-resolution multi-temporal mapping of global urban land using landsat images based on the Google Earth Engine platform[J]. Remote Sensing of Environment, 2018, 209: 227-239.
13 Hao Binfei, Han Xujun, Ma Mingguo, et al. Research process on the application of Google Earth Engine in geoscience and environmental sciences[J]. Remote sensing Technology and Application, 2018, 33(4):600-611.
13 郝斌飞, 韩旭军, 马明国, 等. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用,2018,33(4):600-611.
14 Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment,2017,202:18-27. DOI:10. 1016/j.rse.2017.06.031 .
doi: 10. 1016/j.rse.2017.06.031
15 Kong D, Zhang Y, Gu X, et al. A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 155(SEP.):13-24.
16 Vermeulen L M, Munch Z, Palmer A. Fractional vegetation cover estimation in Southern African rangelands using spectral mixture analysis and Google Earth Engine[J]. Computers and Electronics in Agriculture, 2021, 182(12):105980.DOI:10.1016/j.compag.2020.105980 .
doi: 10.1016/j.compag.2020.105980
17 Tan Meibao, Ran Youhua, Su Yang, et al. Characteristics of vegetation change and its sustainability assessment in the Heihe River Basin from 2001 to 2017[J].Remote Sensing Technology and Application, 2020, 35 (2):71-80.
17 谭美宝, 冉有华, 苏阳,等. 黑河流域2001~2017年植被变化特征及其可延续性评价[J]. 遥感技术与应用, 2020,35(2):71-80.
18 Statistics Bureau of Qinghai Province Statistical Yearbook of Qinghai Province 2016[M]. Beijing: China Statistics Press, 2016.
18 青海省统计局 编. 青海省统计年鉴2016[M]. 北京:中国统计出版社, 2016.
19 Cai B F, Yu R. Advance and evaluation in the long time series vegetation trends research based on remote sensing[J]. Journal of Remote Sensing, 2009, 13(6): 1170-1186.
20 Tamiminia H, Salehi B, Mahdianpari M, et al. Google Earth Engine for Geo-Big Data applications: A meta-analysis and systematic review[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2020. DOI:10.1016/j.isprsjprs.2020.04.001 .
doi: 10.1016/j.isprsjprs.2020.04.001
21 Jiang W, Yuan L, Wang W,et al. Spatio-temporal analysis of vegetation variation in the Yellow River Basin[J]. Ecological Indicators,2015,51:117-126.
22 Long Shuang, Guo Zhengfei, Xu Jiao,et al.Analysis of spatialtemporal variation characteristics of vegetation coverage in China based on Google Earth Engine[J]. Remote Sensing Technology and Application, 2020, 35(2):326-334.
22 龙爽,郭正飞,徐粒,等.基于Google Earth Engine的中国植被覆盖度时空变化特征分析[J].遥感技术与应用,2020,35(2):326-334.
[1] 史志方,熊广成,尹利娜,刘桢,芦艳艳,刘小燕,闰亚迪,崔耀平. 丹江口水库扩张对淅川县“三生空间”的影响研究[J]. 遥感技术与应用, 2022, 37(6): 1525-1536.
[2] 关士英,谢传节,袁占良,刘高焕. 基于SVM的高分时序冬小麦种植区提取研究[J]. 遥感技术与应用, 2022, 37(3): 629-637.
[3] 符冰雪,张继超,杜文杰,王鹏龙,孙中昶. 一种不透水面精细制图新方法及其在城市SDGs指标评估上的应用[J]. 遥感技术与应用, 2021, 36(6): 1339-1349.
[4] 王曦,张怡雯. 基于Landsat影像的北京植被覆盖度变化趋势分析[J]. 遥感技术与应用, 2021, 36(6): 1388-1397.
[5] 马锦典,江洪. SEVI指数消除4种十米级空间分辨率卫星影像地形阴影影响的效果评价[J]. 遥感技术与应用, 2021, 36(5): 1100-1110.
[6] 吴川虎,陶于祥,罗小波. 基于Google Earth Engine的重庆市植被指数长时间序列S-G滤波方法的改进与实现[J]. 遥感技术与应用, 2021, 36(5): 1189-1198.
[7] 陈康明,朱旭东. 基于Google Earth Engine的南方滨海盐沼植被时空演变特征分析[J]. 遥感技术与应用, 2021, 36(4): 751-759.
[8] 段金亮,张瑞,李奎,庞家泰. 一种基于噪声水平估计的扩展线性光谱分解算法[J]. 遥感技术与应用, 2021, 36(4): 820-826.
[9] 王淑静,赖佩玉,郝斌飞,马明国,韩旭军. 西南地区2001~2019年森林损失特征遥感监测与时空分析[J]. 遥感技术与应用, 2021, 36(3): 552-563.
[10] 吴世坤,孙玉. 利用多源数据分析呼伦湖地表与地下水的动态变化[J]. 遥感技术与应用, 2021, 36(1): 155-164.
[11] 王明,刘正佳,陈元琰. 基于Sentinel-2波段/产品的图像云检测效果对比研究[J]. 遥感技术与应用, 2020, 35(5): 1167-1177.
[12] 陈馨,匡文慧. 基于云平台的中哈干旱区典型城市地表覆盖变化遥感监测与比较[J]. 遥感技术与应用, 2020, 35(3): 548-557.
[13] 柴旭荣,李明,周义,王金风,田庆春. 影像的土地覆被快速分类[J]. 遥感技术与应用, 2020, 35(2): 315-325.
[14] 龙爽,郭正飞,徐粒,周华真,方伟华,许映军. 基于Google Earth Engine的中国植被覆盖度时空变化特征分析[J]. 遥感技术与应用, 2020, 35(2): 326-334.
[15] 谭美宝,冉有华,苏阳,李新,杜得彦,廉耀康. 黑河流域2001~2017年植被变化特征及其可延续性评价[J]. 遥感技术与应用, 2020, 35(2): 335-344.