Please wait a minute...
img

Wechat

Remote Sensing Technology and Application  2022, Vol. 37 Issue (6): 1427-1436    DOI: 10.11873/j.issn.1004-0323.2022.6.1427
    
Simulation and Ground Experiment of Microwave Radiation Characteristics on Undulating Surface
Ting Liu1,3,4(),Shaojie Zhao2(),Diyan Chen2,Suhong Liu4,Linna Chai2
1.College of Resources and Environment Science,Xinjiang University,Urumqi 830046,China
2.Key Laboratory of Oasis Ecology of Ministry of Education,Xinjiang University,Urumqi 830046,China
3.State Key Laboratory of Earth Surface Processes and Resource Ecology,Faculty of Geographic Sciences,Beijing Normal University,Beijing 100875,China
4.Faculty of Geographic Sciences,Beijing Normal University,Beijing 100875,China
Download:  HTML  PDF (2040KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Topography is one of the important factors affecting the characteristics of surface microwave radiation. Based on the experiment of observing artificial undulating surface with ground-based microwave radiometer, and the improved mountain surface microwave radiation model, the influence of terrain undulating and surface heterogeneity on the brightness temperature of surface microwave radiation was studied, and the microwave radiation model was verified according to the empirical data. The better results show that the effect of terrain occlusion on surface microwave radiation is consistent with the geometric optics hypothesis in the model. The simulation effect of this model is good, the measured data and the simulated data are consistent with the change trend of terrain, the error between the measured value and the simulated value is smaller after considering the surface roughness. The coupling of surface heterogeneity and topographic relief results in obvious difference of brightness temperature observed at different azimuth angles of H polarization and V polarization. These results provide a reference for the topographic correction model of microwave brightness temperature on mountain surface.

Key words:  Passive microwave remote sensing      Microwave radiation model      Terrain experiment      Shielding effect      Surface heterogeneity     
Received:  13 December 2021      Published:  15 February 2023
ZTFLH:  TP79  
Corresponding Authors:  Shaojie Zhao     E-mail:  lting_liu@163.com;shaojie.zhao@bnu.edu.cn
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Ting Liu
Shaojie Zhao
Diyan Chen
Suhong Liu
Linna Chai

Cite this article: 

Ting Liu,Shaojie Zhao,Diyan Chen,Suhong Liu,Linna Chai. Simulation and Ground Experiment of Microwave Radiation Characteristics on Undulating Surface. Remote Sensing Technology and Application, 2022, 37(6): 1427-1436.

URL: 

http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2022.6.1427     OR     http://www.rsta.ac.cn/EN/Y2022/V37/I6/1427

相关研究研究区域分辨率多方位角多入射角地形遮挡大气异质性
M?tzler等[12](2000)挪威1 000 m
Flores等[18](2009)无指定研究区10 m
Pierdicca等[19](2010)意大利北部250 m
Utku等[17](2011)美国亚利桑那州30 m
Guo等[14](2011)青藏高原东南部90 m
李欣欣等[11](2012)青藏高原1 000 m
Camps等[16](2016)无指定研究区450 m
Table 1  Comparison of microwave radiation simulation and radiation characteristics in mountain areas
Fig.1  Diagram of occlusion effect
Fig.2  Schematic diagram of observation site
辐射计观测高度/m椭圆视场长半轴/m椭圆视场短半轴/m起伏地表面积/视场面积
6.321.260.710.51
5.921.200.680.35
5.521.130.640.18
5.121.070.610.00
Table 2  The ratio of radiometer field size and undulating surface area at different observation heights in X-band
Fig.3  Actual surface observation by radiometer
Fig.4  Verification results of occlusion effect
Fig.5  Comparison between observed and simulated surface emissivity values at different incident angles on flat surface
Fig.6  Influence of topography and observation azimuth on brightness temperature of microwave radiation
1 Yang Xinyuan, Bai Xiaojing. Retrieval of farmland surface soil moisture based on Sentinel-1 and MODIS data: A case study in REMEDHUS Region[J]. Remote Sensing Technology and Application, 2021, 36(5): 973-982.
1 杨欣源, 白晓静. 基于Sentinel-1和MODIS数据反演农田地表土壤水分——以REMEDHUS地区为例[J]. 遥感技术与应用,2021,36(5): 973-982.
2 Karthikeyan L, Pan M, Nagesh Kumar D, et al. Effect of structural uncertainty in passive microwave soil moisture retrieval algorithm[J]. Sensors,2020,20(4):1225-1225. DOI: .
doi: 10.3390/s20041225
3 Sun H, Zhou B, Zhang C, et al. DSCALE_mod16: A Model for disaggregating microwave satellite soil moisture with land surface evapotranspiration products and gridded meteorological data[J]. Remote Sensing,2020,12(6): 980. DOI: .
doi: 10.3390/rs12060980
4 Yang Y, Dou Y, Liu D, et al. Spatial pattern and heterogeneity of soil moisture along a transect in a small catchment on the Loess Plateau[J]. Journal of Hydrology (Amsterdam),2017,550:466-477.
5 Moore I D, Burch G J, Mackenzie D H. Topographic effects on the distribution of surface soil water and the location of ephemeral Gullies[J]. Transactions of the ASAE,1988,31(4): 1098-1107.
6 Li Ainong, Yin Gaofei, Jin Hua 'an, et al. Principles and methods for the retrieval of biophysical variables in mountainous areas[J]. Remote Sensing Technology and Application, 2016,31(1):1-11.
6 李爱农, 尹高飞, 靳华安, 等. 山地地表生态参量遥感反演的理论、方法与问题[J]. 遥感技术与应用, 2016, 31(1):1-11.
7 Guo X, Fu Q, Hang Y, et al. Spatial variability of soil moisture in relation to land use types and topographic features on hillslopes in the black soil (Mollisols) area of Northeast China[J]. Sustainability,2020,12(9):3552. DOI: .
doi: 10.3390/su 12093552
8 Pellarin T, Mialon A, Biron R, et al. Three years of L-band brightness temperature measurements in a mountainous area: Topography, vegetation and snowmelt issues[J]. Remote Sensing of Environment,2016,180: 85-98.
9 Zhao Tianjie.New development and future prospect of L-band soil moisture retrieval by passive microwave[J]. Progress in Geography, 2018,37(2):198-213.
9 赵天杰. 被动微波反演土壤水分的L波段新发展及未来展望[J]. 地理科学进展, 2018,37(2):198-213.
10 Mialon A, Coret L, Kerr Y. H, et al. Flagging the topographic impact on the SMOS signal[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(3): 689-694.
11 Li Xinxin, Zhang Lixin, Jiang Lingmei, et al. Effects of topography on microwave radiation characteristics and soil water retrieval in mountainous areas: A case study of The Tibetan Plateau [J]. Journal of Remote Sensing, 2012, 16(4): 850-867.
11 李欣欣, 张立新, 蒋玲梅, 等. 山区地形效应对微波辐射特征与土壤水分反演的影响——以青藏高原地区为例[J]. 遥感学报, 2012, 16(4): 850-867.
12 Mätzler C, Standley A. Technical note: Relief effects for passive microwave remote sensing[J]. International Journal of Remote Sensing,2000,21(12): 2403-2412.
13 Pulvirenti L, Pierdicca N, Marzano F S. Prediction of the error induced by topography in satellite microwave radiometric observations[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(9): 3180-3188.
14 Guo Y, Shi J, Du J, et al. Evaluation of terrain effect on microwave radiometer measurement and its correction[J]. International Journal of Remote Sensing,2011,32(24): 8899-8913.
15 Sandells M J, Davenport I J, Gurney R J. Passive L-band microwave soil moisture retrieval error arising from topography in otherwise uniform scenes[J]. Advances in Water Resources,2008,31(11): 1433-1443.
16 Camps A, Park H, Pablos M, et al. Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,9(10): 4730-4742.
17 Utku C, Le Vine D M. A Model for prediction of the impact of topography on microwave emission[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(1):395-405.
18 Flores A N, Ivanov V Y, Entekhabi D, et al. Impact of hillslope-scale organization of topography, soil moisture, soil yemperature, and vegetation on modeling surface microwave radiation emission[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(8): 2557-2571.
19 Pierdicca N, Pulvirenti L, Bignami C. Soil moisture estimation over vegetated terrains using multitemporal remote sensing data[J]. Remote Sensing of Environment,2010,114(2): 440-448.
20 Zhao T, Shi J, Lü L, et al. Soil moisture experiment in the Luan River supporting new satellite mission opportunities[J]. Remote Sensing of Environment,2020,240:111680. DOI: .
doi: org/10.1016/j.rse.2020.111680
21 Li Xinxin, Zhang Lixin, Jiang Lingmei, et al. Simulation and experiment of topography effect of passive Microwave radiation[J]. Journal of Remote Sensing, 2011,15(1):100-110.
21 李欣欣, 张立新,蒋玲梅, 等. 被动微波辐射特征地形效应模拟与实验[J]. 遥感学报, 2011, 15(1): 100-110.
22 Zhang Tao, Zhao Shaojie, Zhang Lixin, et al. A truckmountedmulti-frequency microwave radiometer and application of experimental data[J]. Remote Sensing Technology and Application,2015,30(5):1012-1020.
22 张涛, 赵少杰, 张立新, 等. 车载多频率微波辐射计与观测数据应用[J]. 遥感技术与应用, 2015, 30(5): 1012-1020.
23 Kirchhoff G. On the relation between the radiating and absorbing powers of different bodies for light and heat[J]. Philosophical Magazine,1860,20(130): 1-21.
24 Dobson M C, Ulaby F T, Hallikainen M T, et al. Microwave dielectric behavior of wet soil-part II: Dielectric mixing Models[J]. IEEE Transactions on Geoscience and Remote Sensing,1985,GE-23(1): 35-46.
25 Naess A, Gaidai O. Monte Carlo methods for estimating the extreme response of dynamical systems[J]. Journal of Engineering Mechanics,2008,134(8):628-636.
[1] XU Xiao-jun,DU Hua-qiang,ZHOU Guo-mo,FAN Wen-yi. Review on Correlation Analysis of Independent Variables in Estimation Models of Vegetation Biomass Based on Remote Sensing[J]. Remote Sensing Technology and Application, 2008, 23(2): 239 -247 .
[2] ZHANG Duo-kun,TIAN Zhao-shen,LONG Hui,WANG Hong-qi. A New Method for Automatic Geometric Rectification Based on Image Matching in Remote Sensing Image[J]. Remote Sensing Technology and Application, 2008, 23(5): 545 -550 .
[3] PAN Jing-hu, LIU Chun-yu. Retrieving Evapotranspiation of Loess Hilly-gully Region Using TSEB Parallel Model Based on Remote Sensing Image[J]. Remote Sensing Technology and Application, 2010, 25(2): 183 -188 .
[4] Zhiyong Wang,LiHua Wang,Zihao Wang,Hao Li. Research on Error of Three-dimensional Imaging Radar Altimeter in Sea Ice Thickness Estimation[J]. Remote Sensing Technology and Application, 2022, 37(6): 1311 -1318 .
[5] Xiyao Fang,Lingmei Jiang,Huizhen Cui. Soil Moisture Retrieval in the Tibetan Plateau based on Sentinel-1 Radar Data[J]. Remote Sensing Technology and Application, 2022, 37(6): 1447 -1459 .
[6] Hongbo Yan,Hao Li,Xianjian Lu,Jiahua Wang. Spatial-temporal Variation of Soil Moisture in Karst Area based on LST-VI Feature Space[J]. Remote Sensing Technology and Application, 2022, 37(6): 1460 -1471 .
[7] Xuhui Duan,Weixin Xu,Hao Liang,Juan Zhang,na Dai,Qiangzhi Xiao,Qiyu Wang. Study on Remote Sensing Monitoring Method of Dead Alpine Meadow in Winter of Sanjiangyuan Region[J]. Remote Sensing Technology and Application, 2022, 37(6): 1472 -1481 .