Please wait a minute...
img

官方微信

遥感技术与应用  2008, Vol. 23 Issue (4): 378-384    DOI: 10.11873/j.issn.1004-0323.2008.4.378
研究与应用     
基于遥感的土地利用空间格局分布与地表温度的关系
张春玲,余华,宫鹏,居为民
(南京大学国际地球系统科学研究所,江苏   南京 210093)
Relationships between Landscapes Spatial Pattern and Land Surface Temperature
ZHANG Chun-ling,YU Hua,GONG Peng
 (International Institute for Earth System Science,Nanjing University,Nanjing 210093,China)
 全文: PDF(795 KB)  
摘要:

近年由于经济的高速发展,土地利用与覆盖变化很大,促使城市的地表温度值正在逐步升高,城市热岛现象也更加突出。先利用监督分类的最大似然算法对武汉市的ETM影像进行分类,并计算各土地利用类型空间格局分布指数。然后用ETM热红外波段根据单窗算法反演武汉市的地表温度分布,并分别计算各土地利用类型的平均地表温度。最后利用灰色相关分析方法定量分析土地利用空间格局分布指数对地表温度的影响。结果表明武汉市土地利用类型的空间格局分布指数与地表温度有较好的相关性,其中地表温度与散布与并列指数(IJI)、同类斑块相邻百分数指数(PLADJ)和最大斑块所占景观面积比例指数(LPI)的灰色关联度较高,说明地表温度的分布不仅受到各类型斑块与其它斑块相邻情况的影响较大,还受到最大斑块所占的总土地面积比例的影响。

关键词: 遥感土地利用空间格局分布 地表温度灰色关联    
Abstract:

Recently with the rapid development of economy,the great change of land use/cover would make land surface temperature increased.Urban heat island effect has become more prominent.In this study,we choose Wuhan city as an experimental area.Landsat 7 ETM+ images (July 9,2002.) was selected to retrieve land use/cover types by maximum likelihood method and land surface temperature using mono-window algorithm,and then computed landscape metrics and mean land surface temperature of all kinds of land use.Finally grey relational analysis was used quantitatively to analyze impacts of landscapes pattern on land surface temperature.The results show that: ① In the landscape pattern,water and build-up consisted of large patches and paddy and glebe consisted of small patches.② It was obvious that there is a thermal gradient between Central Business District (CBD) and the countryside.In terms of the spatial pattern of the land brightness temperature,the most extensive UHI was distributed in Hankou,Hanyang and Wuchang.Urban heat islands distribution in Dongxi Lake,Caidian,Hannan and Jiangxia was scattered with some little heat islands.③ Interspersion and Juxtaposition Index (IJI) and Percentage of like Adjacencies (PLADJ) and Largest Patch Index (LPI) were the most important factors that influence the land surface temperature.

Key words:  Remote sensing    Landscapes pattern    Land surface temperature    Grey relational analysis
收稿日期: 2008-03-09 出版日期: 2011-11-03
:  TP 79  
基金资助:

国家科技支撑计划项目资助(2006BAJ10B03)。

作者简介: 张春玲(1976-),女,博士,主要从事土地利用与覆盖变化研究。E-mail:zcling4436@sina.com。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张春玲,余华,宫鹏,居为民. 基于遥感的土地利用空间格局分布与地表温度的关系[J]. 遥感技术与应用, 2008, 23(4): 378-384.

ZHANG Chun-ling,YU Hua,GONG Peng. Relationships between Landscapes Spatial Pattern and Land Surface Temperature. Remote Sensing Technology and Application, 2008, 23(4): 378-384.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2008.4.378        http://www.rsta.ac.cn/CN/Y2008/V23/I4/378

[1] Qian L X,Ding S Y.Influence of Land Cover Change on Land Surface Temperate in Zhujiang Delta[J].Acta Geographica Sinica.2005,60 (5):761-770.[钱乐祥,丁圣彦.珠江三角洲土地覆盖变化对地表温度的影响[J].地理学报,2005,60(5):761-770.]
[2] Streutker D R.A Remote Sensing Study of the Urban Heat Island of Houston,Texas[J].International Journal of Remote Sensing.2002,23:2595-2608.
[3] Chen X L.Remote Sensing Image-based Analysis of the Relationship between Urban Heat Island and Land Use/Cover Changes[J].Remote Sensing of Environment.2006,104:133-146.
[4] Yue W Z ,Xu J H,Xu L H.An Analysis on Eco-environmental Effect of Urban Land Use Based on Remote Sensing Images[J].Acta Ecologica Sinica.2006,26(5):1450-1460.[岳文泽,徐建华,徐丽华.基于遥感影像的城市土地利用生态环境效应研究[J].生态学报,2006,26(5):1450-1460.]
[5] Ding F,Xu H Q.Comparison of Two New Algorithms for Retrieving Land Surface Temperature from Landsat TM Thermal Band[J].Geo-Information Science,2006,8(3):125-131.[丁风,徐涵秋.TM热波段图像的地表温度反演算法与实验分析[J].地球信息科学,2006,8(3):125-131.]
[6] Zou X P ,Qi Q W,Xu Z R,etal.Analysis of Land Use/Cover Changes and Its Landscape Ecological Effects in Nanjing Watershed[J].Journal of Soil and Water Conservation.2005,19(5):147-151.[邹秀萍,齐清文,徐增让,等.怒江流域土地利用/覆被变化及其景观生态效应分析[J].水土保持学报,2005,19(5):147-151.]
[7] Qin Z H,Zhang M H,Karnieli A,et al.Mono-window Algorithm for Retrieving Land Surface Temperature from Landsat TM6 Data[J]. Acta Geographica Sinica,2001,25(6): 671-677.[覃志豪,Zhang M H ,Karnieli A,等.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报,2001,56(4):456-466.]
[8] Zhu X H,Cai Y L.Fractal Analysis of Land Use in China[J].Scientia Geographica Sinica,2005,25(6),671-677.[朱晓华,蔡运龙.中国土地利用空间分形结构及其机制[J].地理科学,2005,25(6),671-677.]
[9] Wei Y C,Huang Y Z.The Gain/Biases Value and Their Effect on the Calculation Results of Planetary Reflectance in Landsat-5 Image[J]. Geo-information Science, 2006, 8 (1): 110-114.[韦玉春,黄玉柱.Landsat5图像的增益、偏置取值及其对行星反射率计算分析[J].地球信息科学,2006,8(1):110-114.]
[10] Ding Y M,Zhang J X,Wang J,etal.Vegetation Fraction Estimation Based on TM Data[J].Science of Surveying and Mapping.2006,18(5):43-46.[丁艳梅,张继贤,王坚,等.基于TM数据的植被覆盖度反演[J].测绘科学,2006,18(5):43-46.]
[11] Li Y H,Wang J,Lv C Y,et al.Retrieve of Earth Reflection Based on TM Data[J].Journal of Shandong Agricultural University.2005,36(4):545-551.[李玉环,王静,吕春燕,等.基于TM/ETM遥感数据的地面相对反射率反演[J].山东农业大学学报,2005,36(4):545-551.]
[12] Wulamu A,Qin Q M,Zhu L J.6S Model Based Atmospheric Correction of Visible and Near-infrared Data and Sensitivity Analysis[J].Journal of Peking University.2004,40(4):611-618.[阿布都瓦斯提.吾拉木,秦其明,朱黎江.基于6S模型的可见光、近红外遥感数据的大气纠正[J].北京大学学报,2004,40(4):611-618.]
[13] Fang S B,Li Y G,Yang W N,et al.Retrieving Land Surface Temperature from Landsat TM6 Data in Chengdu City[J].Remote Sensing Information.2004,35-37.[房世波,李佑国,杨武年,等.基于TM6数据的成都市地表温度反演[J].遥感信息,2004,35-37.]
[14] Dong Y F,Sun G Q,Pang Y,et al.A Comparative Study of Some Atmospheric Correction Methods[J].Remote Sensing for Land & Resources.2005,2(64):16-20.[董彦芳,孙国清,庞勇,等.几种用于TM图像薄云去除的大气纠正算法比较[J].国土资源遥感,2005,2(64):16-20.]
[15] Gao B C.NDWI-a Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space[J].Remote Sensing of Environment,1996,58(3):257-266.

[1] 王卷乐, 程凯, 边玲玲, 韩雪华, 王明明. 面向SDGs和美丽中国评价的地球大数据集成框架与关键技术[J]. 遥感技术与应用, 2018, 33(5): 775-783.
[2] 汪子豪,秦其明,孙元亨. 基于BP神经网络的地表温度空间降尺度方法[J]. 遥感技术与应用, 2018, 33(5): 793-802.
[3] 王恺宁,王修信,黄凤荣,罗涟玲. 喀斯特城市地表温度遥感反演算法比较[J]. 遥感技术与应用, 2018, 33(5): 803-810.
[4] 石满,陈健,覃帮勇,李盛阳. 天宫二号数据地表温度反演及其在城市群热环境监测中的应用[J]. 遥感技术与应用, 2018, 33(5): 811-819.
[5] 李军,龚围,辛晓洲,高阳华. 重庆地表温度的遥感反演及其空间分异特征[J]. 遥感技术与应用, 2018, 33(5): 820-829.
[6] 金点点,宫兆宁. 基于Landsat 系列数据地表温度反演算法对比分析—以齐齐哈尔市辖区为例[J]. 遥感技术与应用, 2018, 33(5): 830-841.
[7] 张晓峰,吕晓琪,张信雪,张继凯,王月明,谷宇,樊宇. 多时刻海色遥感数据融合及其可视化[J]. 遥感技术与应用, 2018, 33(5): 873-880.
[8] 谢旭,陈芸芝. 基于PSO-RBF神经网络模型反演闽江下游水体悬浮物浓度[J]. 遥感技术与应用, 2018, 33(5): 900-907.
[9] 迟文峰,匡文慧,贾静,刘正佳. 京津风沙源治理工程区LUCC及土壤风蚀强度动态遥感监测研究[J]. 遥感技术与应用, 2018, 33(5): 965-974.
[10] 胡云锋,商令杰,张千力,王召海. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4): 573-583.
[11] 李晨伟,张瑞丝,张竹桐,曾敏 . 基于多源遥感数据的构造解译与分析—以西藏察隅吉太曲流域为例[J]. 遥感技术与应用, 2018, 33(4): 657-665.
[12] 李生生,王广军,梁四海,彭红明,董高峰,罗银飞. 基于Landsat-8 OLI数据的青海湖水体边界自动提取[J]. 遥感技术与应用, 2018, 33(4): 666-675.
[13] 廖凯涛,齐述华,王成,王点. 结合GLAS和TM卫星数据的江西省森林高度和生物量制图[J]. 遥感技术与应用, 2018, 33(4): 713-720.
[14] 张震,刘时银,魏俊锋,蒋宗立. 1974~2012年珠穆朗玛峰地区冰川物质平衡遥感监测研究[J]. 遥感技术与应用, 2018, 33(4): 731-740.
[15] 王琳,徐涵秋,李胜. 重钢重工业区迁移对区域生态的影响研究[J]. 遥感技术与应用, 2018, 33(3): 387-397.