Please wait a minute...
img

官方微信

遥感技术与应用  2019, Vol. 34 Issue (6): 1197-1204    DOI: 10.11873/j.issn.1004-0323.2019.6.1197
定标专栏     
风云三号卫星微波探测仪定标原理及算法
王振占1(),李娇阳1,2()
1.中国科学院国家空间科学中心微波遥感技术重点实验室,北京 100190
2.中国科学院大学,北京 100049
Calibration Principle and Algorithm of Microwave Sounder Onboard FengYun-3 Satellites
Zhenzhan Wang1(),Jiaoyang Li1,2()
1.Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(1009 KB)   HTML
摘要:

微波探测仪是搭载于气象卫星上的重要载荷,可全天候获取大气温度、湿度垂直廓线、降雨等重要大气参数,为气象预报、气候变化研究和灾害性天气现象监测等提供重要数据。定标是星载微波探测仪定量化应用的基础。详细阐述了星载微波探测仪定标基本原理,给出了定标相关基础概念,并根据星载微波探测仪仪器特性,系统地梳理了发射前热真空定标、发射后在轨定标/真实性检验技术和定标算法,同时对定标试验实施方案和定标算法实现的关键点进行了总结,从而建立了完整的星载微波探测仪定标流程和基准,对星载微波探测仪的统一化定标和定量化应用具有重要意义。

关键词: 风云三号卫星星载微波探测仪定标定量化应用    
Abstract:

The Satellite-borne Microwave Sounder is an important payload of a meteorological satellite. It can provide important atmospheric parameters such as vertical profile of temperature and humidity and rainfall in all weather conditions, which can provide important data for meteorological forecast, climate change research and disaster monitoring. Calibration is the key basis for the quantitative application of the Satellite-borne microwave sounder.In this paper, the basic calibration principle of the Satellite-borne microwave sounder is described in detail. The definitions about the calibration are also given. There are two calibration phases of the Satellite-borne microwave sounder, prelaunch Thermal/Vacuum calibration and on-orbit calibration and validation. The technology and method of each calibration phase are summarized, and the key points are all pointed out. To sum up, a standard for Satellite-borne microwave sounder calibration is established, which is of great significance to apply the unified calibration and quantitative application of the Satellite-borne microwave sounder.

Key words: FengYun-3 Satellite    Satellite-borne Microwave Sounder    Calibration    Quantitative application
收稿日期: 2018-08-17 出版日期: 2020-03-23
ZTFLH:  TP751  
基金资助: 国家重点研发计划项目“战略新兴产业关键国际标准研究(一期)”(2016YFF0202700)
通讯作者: 李娇阳     E-mail: wangzhenzhan@mirslab.cn;lijiaoyang199204@126.com
作者简介: 王振占(1969-),男,河北青龙人,研究员,主要从事微波遥感新技术及应用技术研究。E?mail:wangzhenzhan@mirslab.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王振占
李娇阳

引用本文:

王振占,李娇阳. 风云三号卫星微波探测仪定标原理及算法[J]. 遥感技术与应用, 2019, 34(6): 1197-1204.

Zhenzhan Wang,Jiaoyang Li. Calibration Principle and Algorithm of Microwave Sounder Onboard FengYun-3 Satellites. Remote Sensing Technology and Application, 2019, 34(6): 1197-1204.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2019.6.1197        http://www.rsta.ac.cn/CN/Y2019/V34/I6/1197

图1  定标原理图
图2  热真空定标示意图
图3  热真空定标算法流程图
图4  星上定标流程图
1 Ulaby F, Long D. Microwave Radar and Radiometric Remote Sensing[M].American:University of Michigan Press, 2014.
2 Mo T. A Study of the Microwave Sounding Unit on the NOAA-12 Satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(5): 1141-1152.
3 Mo T. Prelaunch Calibration of the Advanced Microwave Sounding Unit-A for NOAA-K[J]. IEEE Transaction on Microwave Theory and Techniques,1996, 44(8): 1460-1470.
4 Cherny I V, Raizer V Y. Passive Microwave Remote Sensing of Oceans [M]. Bodmin: John Wiley & Sons Ltd association with Praxis Publishing Ltd, 1998.
5 Bonsignori R. The Microwave Humidity Sounder (MHS): In-orbit Performance Assessment[C]∥Sensors, Systems, and Next-Generation Satellites XI.2007:67440A1-67440A12.
6 Lambrigtsen B H, Calheiros R V. The Humidity Sounder for Brazil - an International Partnership[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2):352-361.
7 Kim E, Lyu C J, Leslie R V, et al. The Advanced Technology Microwave Sounder (ATMS): A New Operational Sensor Series[C]∥IEEE Geoscience and Remote Sensing Symposium. 2012.
8 Zhang Shengwei, Li Jing, Jiang Jingshan, et al. Design and Development of Microwave Humidity Sounder for FY-3 Meteorological Satellite[J]. Journal of Remote Sensing. 2008,12(2):199-207.
8 张升伟, 李 靖, 姜景山,等. 风云三号卫星微波湿度计的系统设计与研制[J]. 遥感学报,2008,12(2):199-207.
9 Zhang Shengwei, Wang Zhenzhan, Sun Maohua, et al. The Design and Development of Advanced Microwave Atmospheric Sounder onboard FY-3 Satellite [J]. Engineering Sciences. 2013, 15(7):81-87.
9 张升伟, 王振占, 孙茂华,等. 风云三号卫星先进微波大气探测仪系统设计与研制[J]. 中国工程科学, 2013, 15(7):81-87.
10 Zhang Yu, Zhang Shengwei, Wang Zhenzhan, et al. Technology Development of Atmospheric Humidity Sounding of FY-3 Satellite[J]. Aerospace Shanghai, 2017, 34(4): 52-61.
10 张瑜, 张升伟, 王振占,等. FY-3卫星大气湿度微波探测技术发展[J]. 上海航天, 2017, 34(4): 52-61.
11 Chen Wenxin, Chi Jidong, Li Yanming, et al. Microwave Temperature Sounding (MWTS) for FY-3 Meteorology Satellite[J], Engineering Sciences, 2013, 15(7): 88-91.
11 陈文新, 迟吉东, 李延明,等. 风云三号气象卫星微波温度计(MWTS)[J]. 中国工程科学, 2013, 15(7): 88-91.
12 Wang Zhenzhan, Zhang Shengwei, Li Jing, et al. Thermal/vacuum Calibration of Microwave Humidity Sounder on FY-3B Satellite[J]. Engineering Sciences, 2013, 15(10):33-53.
12 王振占, 张升伟, 李 靖,等. FY-3B卫星微波湿度计热真空定标方法和结果分析[J].中国工程科学,2013,15(10):33-53.
13 Gu S Y, Guo Y, Wang Z Z, et al. Calibration Analysis for Sounding Channels of MWHS Onboard FY-3A[J]. IEEE Transaction on Geoscience and Remote Sensing, 2012, 50(12): 4885–4891.
14 Wang Zhenzhan, Li Jing, Zhang Shengwei, et al. Prelaunch Calibration of Microwave Humidity Sounder on China’s FY-3A Meteorological Satellite[J]. IEEE Geoscience and Remote Sensing Letter, 2011, 8(1): 29–33.
15 He Jieying, Zhang Shengwei and Wang Zhenzhan. Advanced Microwave Atmospheric Sounder (AMAS) Channel Specifications and T/V Calibration Results on FY-3C Satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 481–493.
16 Saunders R W, Hewison T J, Stringer S J, et al. The Radiometric Characterization of AMSU-B[J]. IEEE Transactions on Microwave Theory and Techniques,1995,43(4):760–771.
17 Wang Z Z, Li J Y, He J Y, et al. Performance Analysis of Microwave Humidity and Temperature Sounder Onboard the FY-3D Satellite from Prelaunch Multiangle Calibration Data in Thermal/Vacuum Test[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018,57(3):1664-1683.
18 Gu Songyan, Wang Zhenzhan, Li Jing, et al. FY-3A/MWHS Data Calibration and Validation Analysis[J]. Engineering Sciences, 2013, 15(7):92-100.
18 谷松岩, 王振占, 李靖,等. FY-3A/MWHS在轨辐射定标及结果分析[J]. 中国工程科学,2013, 15(7):92-100.
19 Guo Yang, Lu Naimeng, Qi Chengli, et al. Calibration and Validation of Microwave Humidity and Temperature Sounder onboard FY-3C Satellite[J]. Chinese Journal of Geophysics, 2015, 58(1): 20-31.
19 郭杨, 卢乃锰, 漆成莉,等. 风云三号C星微波湿温探测仪的定标和验证[J]. 地球物理学报,2015,58(1):20-31.
20 Gu Songyan, Wu Ronghua, You Ran. The Analysis and Correction of Lunar Intrusion to Space View of FY-3A/MWHS[J]. Journal of Applied Meteorological Science, 2015,26(4):442-450.
20 谷松岩, 吴荣华, 游然,等. FY-3A/MWHS 冷空测值受月球影响分析及修正[J]. 应用气象学报,2015,26(4):442-450.
21 Gu Songyan, Guo Yang, You Ran. Radiance Transfer for FY-3A/MWHS and Space View Bias Correction[J]. Remote Sensing Technology and Application, 2015, 30(2): 251-257.
21 谷松岩, 郭杨, 游然,等. FY-3A/MWHS辐射传递及冷空偏差修正[J]. 遥感技术与应用,2015,30(2):251-257.
22 JPL. Project AIRS. Algorithm Theoretical Basis Document[R]. Lwvel 1b, Part3: Microwave Instruments, Version2.1.10, 2012.
23 Weng F Z, Yang H, Zou X L. On Convertibility From Antenna to Sensor Brightness Temperature for ATMS[J]. IEEE Geoscience and Remote Sensing Letters,2013,10(4):771-775.
24 Gu Songyan, Guo Yang, Wang Zhenzhan, et al. Calibration Analyses for Sounding Channels of MWHS onboard FY-3A[J]. Advances in Meteorological Science and Technology, 2013,3(4): 43-49.
24 谷松岩, 郭杨, 王振占,等. 风云三号A星微波湿度计探测通道定标分析[J]. 气象科技进展,2013,3(4): 43-49.
[1] 张宇飞,蒋兴伟,马超飞. 基于现场观测的星载雷达高度计定标方法进展[J]. 遥感技术与应用, 2019, 34(6): 1190-1196.
[2] 庞博, 马灵玲, 刘耀开, 王宁, 赵永光, 韩启金. 陆地卫星光学载荷地基自动辐射定标与验证分析[J]. 遥感技术与应用, 2019, 34(1): 146-154.
[3] 牛明慧,陈福春. 基于月球反射的遥感仪器在轨定标方法[J]. 遥感技术与应用, 2018, 33(2): 337-341.
[4] 王振占,董帅,殷晓斌,陆浩,李彬. 有源微波冷噪声源的原理及其应用分析[J]. 遥感技术与应用, 2017, 32(2): 247-254.
[5] 龚循武,郭伟,万珺之. 基于有源定标器的HY-2高度计后向散射系数在轨定标方法研究[J]. 遥感技术与应用, 2017, 32(2): 374-379.
[6] 陈怡羽,郭强. 中短波红外恒星定标点扩散函数求解及精度分析[J]. 遥感技术与应用, 2017, 32(1): 158-165.
[7] 王功雪,蒋玲梅,武胜利,刘晓敬,郝诗睿. FY-3B与FY-3C/MWRI交叉定标及雪深算法应用[J]. 遥感技术与应用, 2017, 32(1): 49-56.
[8] 陈卫英,刘高峰,何嘉恺,潘莉. 降低微波成像仪接收机非线性偏差方法研究[J]. 遥感技术与应用, 2017, 32(1): 121-125.
[9] 徐曦煜,刘和光,杨双宝. 星载雷达高度计沙漠散射特性及定标方法研究[J]. 遥感技术与应用, 2016, 31(5): 893-899.
[10] 谌华,郭伟,万珺之,赵飞,王彩云. 基于有源定标器的卫星雷达高度计近海测高基准重建方法研究[J]. 遥感技术与应用, 2016, 31(5): 912-918.
[11] 胡同喜,赵天杰,施建成,谷金枝. AMSR-E与AMSR2被动微波亮温数据交叉定标[J]. 遥感技术与应用, 2016, 31(5): 919-924.
[12] 翟万林,陈春涛,朱建华,闫龙浩. 基于GPS浮标的高度计定标技术研究[J]. 遥感技术与应用, 2016, 31(5): 925-929.
[13] 陶利,曲圣杰,陈曦. 简述极化SAR 定标处理技术研究进展[J]. 遥感技术与应用, 2016, 31(3): 459-467.
[14] 张涛,赵少杰,张立新,张钟军,蒋玲梅,柴琳娜. 车载多频率微波辐射计与观测数据应用[J]. 遥感技术与应用, 2015, 30(5): 1012-1020.
[15] 叶沛,许可,徐曦煜. 基于奇异谱分析的DGPS浮标海面高测量误差研究[J]. 遥感技术与应用, 2015, 30(4): 661-666.