Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (1): 117-124    DOI: 10.11873/j.issn.1004-0323.2022.1.0117
青促会十周年专栏     
基于风云三号卫星微波成像仪观测的全球海气界面潜热通量遥感
安婷玉1,2(),易欣3,杨晓峰1(),殷晓斌4
1.中国科学院空天信息创新研究院,遥感科学国家重点实验室,北京 100101
2.中国科学院大学,北京 100049
3.中国人民解放军61741部队,北京 100094
4.中国海洋大学信息科学与工程学部海洋技术学院,山东 青岛 266003
Remote Sensing of Global Air-Sea Latent Heat Fluxes from FY-3 Microwave Radiation Imager Observations
Tingyu An1,2(),Xin Yi3,Xiaofeng Yang1(),Xiaobin Yin4
1.The Key Laboratory of Remote Sensing Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100101,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
3.61741 Troops of PLA,Beijing 100094,China
4.Ocean University of China,Faculty of Information Science and Engineering,College of Marine Technology,Qingdao 266003,China
 全文: PDF(2392 KB)   HTML
摘要:

海气界面潜热通量是衡量海气间能量和水汽交换的重要指标。热通量卫星遥感产品具有覆盖面广、时效性高的优势,但也存在观测非同步、潜热通量精度较低的问题。由于近表面空气比湿度是潜热通量卫星遥感的重要误差源,基于风云三号卫星微波成像仪观测数据,研究对空气比湿度反演算法进行了改进,改进后的算法与现场实测数据相比,反演精度有明显的提高。针对极轨气象卫星过境时间相对固定的问题,使用现场观测数据分析了潜热通量日内变化过程并建立了日均潜热通量估算模型,利用风云三号微波成像仪数据,通过块体法计算了全球海洋潜热通量。与现场实测数据相比,其偏差、均方根误差和相关系数分别为3.50 W/m2、32.96 W/m2和0.79。

关键词: 潜热通量微波成像仪风云三号空气比湿度    
Abstract:

The Latent Heat Flux(LHF) is an essential indicator for measuring energy and water vapor exchange between the air and sea. Satellite-based surface turbulent fluxes are widely used due to their wide coverage and high timeliness advantages. However, there are still problems with non-synchronous observations and low accuracy of latent heat flux estimation. Since the sea surface air specific humidity is the primary error source in satellite remote sensing of latent heat flux, the air specific humidity retrieval algorithm is improved based on the Fengyun-3 Micro-Wave Radiation Imager(MWRI) data. Compared with the in-situ measurements from moored buoys, the inversion results have been significantly improved. In view of satellite’s relatively fixed overpassing time of satellites, the intraday variation process of latent heat flux is analyzed using the in situ data. Then a daily average latent heat flux estimation model is established. The Fengyun-3/MWRI data are used to calculate the global air-sea latent heat flux by the COARE3.6 algorithm. The bias, Root Mean Square Difference(RMSD), and correlation coefficient(R2) between satellite and buoy are 3.50 W/m2, 32.96 W/m2, and 0.79.

Key words: Latent Heat Flux    MWRI    FY-3D    Specific Air Humidity
收稿日期: 2021-02-03 出版日期: 2022-04-08
ZTFLH:  P407  
基金资助: 中科院战略性先导专项课题“全球海洋环境基础数据库与过程交互系统”(XDA19060100)
通讯作者: 杨晓峰     E-mail: anty@radi.ac.cn;yangxf@radi.ac.cn
作者简介: 安婷玉(1996-),女,河南郑州人,硕士研究生,主要从事海洋遥感。E?mail: anty@radi.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
安婷玉
易欣
杨晓峰
殷晓斌

引用本文:

安婷玉,易欣,杨晓峰,殷晓斌. 基于风云三号卫星微波成像仪观测的全球海气界面潜热通量遥感[J]. 遥感技术与应用, 2022, 37(1): 117-124.

Tingyu An,Xin Yi,Xiaofeng Yang,Xiaobin Yin. Remote Sensing of Global Air-Sea Latent Heat Fluxes from FY-3 Microwave Radiation Imager Observations. Remote Sensing Technology and Application, 2022, 37(1): 117-124.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.1.0117        http://www.rsta.ac.cn/CN/Y2022/V37/I1/117

系数Hv≤1 3001 300<Hv≤1 8001 800<Hv≤2 3002 300<Hv≤28002 800<Hv≤3 300Hv>3 300
c0-120.252 7-66.200 1-50.442 2-41.263 8-54.696 5-86.331 4
c10.026 6-0.009 2-0.013 3-0.008 0-0.064 7-0.051 9
c2-0.007 10.008 30.003 80.001 90.029 10.018 3
c3-0.042 6-0.009 9-0.036 1-0.064 7-0.098 8-0.024 7
c4-0.012 4-0.012 30.009 30.014 60.037 40.000 0
c5-0.449 90.143 20.325 90.599 70.819 11.141 1
c60.001 0-0.000 3-0.000 8-0.001 2-0.001 7-0.002 4
c70.141 00.049 00.032 1-0.118 0-0.259 2-0.330 9
c8-0.000 2-2.14×10-56.73×10-50.000 40.000 70.001 0
c9-0.065 0-0.040 2-0.011 3-0.008 70.061 10.000 0
c100.001 54-0.023 6-0.020 3-0.002 6-0.039 5-0.022 3
c111.406 30.505 20.188 9-0.151 3-0.187 30.000 0
c12-0.002 5-0.000 9-0.000 20.000 40.000 48.82×10-5
c13-0.123 4-0.071 9-0.025 20.091 50.174 3-0.017 3
c140.000 20.000 11.00×10-5-0.000 30.000 40.000 0
c150.016 90.010 80.008 70.006 70.006 30.006 1
表1  空气比湿度算法回归系数表
图1  现场观测与校正算法得到的遥感空气比湿度比较
图2  2018年浮标43301潜热通量平均日变化
图3  潜热通量日均值回归模型实测值与估算值比较
通道名称中心频率(GHz)带宽(MHz)地面分辨率
10 V/H10.6518051 km× 85 km
19 V/H18.720030 km× 50 km
23 V/H23.840027 km× 45 km
37 V/H36.590018 km× 30 km
89 V/H89.04 6009 km× 15 km
表2  FY-3D微波成像仪主要参数
图4  浮标站位分布
图5  2020年1月1日FY-3D微波辐射仪日平均潜热通量
图6  2020年1月现场观测潜热通量、ERA5潜热通量同FY-3D卫星潜热通量日均值散分图
图7  2020年7月FY-3D卫星反演与ERA5再分析资料潜热通量的平均偏差沿纬向分布,从左至右依次为太平洋、大西洋和印度洋
1 Chen Jinnian, Wang Hongna, Zuo Tao,et al. Variation of air-sea heat fluxes and clineate change over the joining area of Asia and Indean-Pacific Ocean[M]. Beijing: China Ocean Press, 2013.陈锦年, 王宏娜, 左涛, 等. 亚印太海气界面热通量变化特征及气候效应[M].北京: 海洋出版社, 2013.
2 Schulz J, Meywerk J, Ewald S, et al. Evaluation of satellite-derived latent heat fluxes [J]. Journal of Climate, 1997, 10(11):2782-95. DOI:10.1175/1520-0442(1997)010<2782:EOSDLH> 2.0.CO;2 .
doi: 10.1175/1520-0442(1997)010<2782:EOSDLH> 2.0.CO;2
3 Weill A, Eymard L, Caniaux G, et al. Toward a better determination of turbulent air-sea fluxes from several experiments[J].Journal of Climate,2003,16(4):600-618. DOI:10. 1175/1520-0442(2003)016<0600:TABDOT>2.0.CO;2 .
doi: 10. 1175/1520-0442(2003)016<0600:TABDOT>2.0.CO;2
4 Duan Ziqiang, Gao Huiwang. The air-sea eddy covariance fluxes correction using different methods for the ship-based measurement[J]. Periodical of Ocean University of China, 2015, 45(7):18-24.
4 段自强,高会旺. 利用不同方法校正船体运动对海气通量观测结果的影响[J]. 中国海洋大学学报(自然科学版), 2015, 45(7):18-24.
5 Friehe C A, Schmitt K F. Parameterization of air-sea interface fluxes of sensible heat and moisture by the bulk aerodynamic Formulas[J]. Journal of Physical Oceanography, 1976, 6(6):801-809. DOI:10.1175/1520-0485(1976)006<0801:POASIF>2.0.CO;2 .
doi: 10.1175/1520-0485(1976)006<0801:POASIF>2.0.CO;2
6 Large W G, Pond S. Open ocean momentum flux measurements in moderate to strong winds[J]. Journal of Physical Oceanography, 1981, 11(3):324-336. DOI:10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2 .
doi: 10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
7 Yao Y, Liang S, Li X, et al. A satellite-based hybrid algorithm to determine the Priestley–Taylor parameter for global terrestrial latent heat flux estimation across multiple biomes[J]. Remote Sensing of Environment, 2015, 165:216-233. DOI:10.1016/j.rse.2015.05.013 .
doi: 10.1016/j.rse.2015.05.013
8 Yao Y, Liang S, Li X, et al. Improving global terrestrial evapotranspiration estimation using support vector machine by integrating three process-based algorithms[J]. Agricultural and Forest Meteorology, 2017, 242:55-74. DOI:10.1016/j.agrformet.2017.04.011 .
doi: 10.1016/j.agrformet.2017.04.011
9 Shie C L, Chiu L S, Adler R, et al. A note on reviving the Goddard Satellite-based Surface Turbulent Fluxes (GSSTF) dataset[J]. Advances in Atmospheric Sciences, 2009, 26(6): 1071-1080. DOI:10.1007/s00376-009-8138-z .
doi: 10.1007/s00376-009-8138-z
10 Andersson A, Fennig K, Klepp C, et al. The Hamburg Ocean Atmosphere Parameters and fluxes from satellite data – HOAPS-3 [J]. Earth System Science Data Discussion, 2010, 3(1):215-234. DOI:10.5194/essd-2-215-2010 , 2010.
doi: 10.5194/essd-2-215-2010
11 Tomita H, Hihara T, Kako S I, et al. An introduction to J-OFURO3, a third-generation Japanese ocean flux data set using remote-sensing observations[J]. Journal of Oceanography,2019,75(2):171-194.DOI:10.1007/s10872-018-0493-x .
doi: 10.1007/s10872-018-0493-x
12 Yang Hu, Li Xiaoqing, You Ran, et al. Environmental data records from FengYun-3B microwave radiation imager[J]. Advances in Meteorological Science and Technology,2013(4): 136-143.
doi: 10.3969/j.issn.2095-1973.2013.04.014
12 杨虎,李小青,游然,等. 风云三号微波成像仪定标精度评价及业务产品介绍[J]. 气象科技进展, 2013(4):136-143. DOI:10.3969/j.issn.2095-1973.2013.04.014 .
doi: 10.3969/j.issn.2095-1973.2013.04.014
13 Bentamy A, Katsaros K B, Mestas-Nuñez A M,et al. Satellite estimates of wind speed and latent heat flux over the global oceans[J]. Journal of Climate,2003,16(4):637-656.DOI:10. 1175/1520-0442(2003)016<0637:SEOWSA>2.0.CO;2 .
doi: 10. 1175/1520-0442(2003)016<0637:SEOWSA>2.0.CO;2
14 Gleckler P J, Weare B C. Uncertainties in global ocean surface heat flux climatologies derived from ship observations[J]. Journal of Climate, 1997, 10(11):2764-2781.DOI:10.1175/1520-0442(1997)010<2764:UIGOSH>2.0.CO;2 .
doi: 10.1175/1520-0442(1997)010<2764:UIGOSH>2.0.CO;2
15 Bourras D. Comparison of five satellite-derived latent heat flux products to moored Buoy data[J]. Journal of Climate. 2006, 19(24):6291-6313. DOI:10.1175/JCLI3977.1 .
doi: 10.1175/JCLI3977.1
16 Iwasaki S, Kubota M, Tomita H. Evaluation of bulk method for satellite-derived latent heat flux [J]. Journal of Gerphysical Research, 2010, 115(C7). DOI:10.1029/2010JC006175 .
doi: 10.1029/2010JC006175
17 Buck A L. New Equations for computing vapor pressure and enhancement factor [J]. Journal of Applied Meteorology and Climatology, 1981, 20(12):1527-1532. DOI:10.1175/1520-0450 (1981)020<1527:NEFCVP>2.0.CO;2 .
doi: 10.1175/1520-0450 (1981)020<1527:NEFCVP>2.0.CO;2
18 Brunke M A, Fairall C W, Zeng X B, et al. Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes?[J]. Journal of Climate, 2003, 16(4):619-635. DOI:10.1175/1520-0442(2003)016<0619:WBAAAL>2.0.CO;2 .
doi: 10.1175/1520-0442(2003)016<0619:WBAAAL>2.0.CO;2
19 Fairall C, Bradley E, Rogers D, et al. Bulk parameterization of air-sea fluxes for the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE)[J]. Journal of Geophysical Research: Oceans, 1996, 101(C2):3747-3764. DOI:10.1029/95JC03205 .
doi: 10.1029/95JC03205
20 Gao Q, Wang S, Yang X. Estimation of surface air specific humidity and air-sea latent heat flux using FY-3C microwave observations[J]. Remote Sensing, 2019, 11(4):466. DOI:10.3390/rs11040466 .
doi: 10.3390/rs11040466
21 Kanemaru K, Masunaga H. A satellite study of the relationship between sea surface temperature and column water vapor over tropical and subtropical oceans[J]. Journal of Climate, 2013,26(12):4204-4218. DOI:10.1175/JCLI-D-12-00307.1 .
doi: 10.1175/JCLI-D-12-00307.1
22 Fairall C W, Bradley E F, Godfrey J S, et al. Cool-skin and warm-layer effects on sea surface temperature [J].Journal of Geophysical Research. 1996, 101(C1):1295-1308. DOI:10.1029/95JC03190 .
doi: 10.1029/95JC03190
23 Fairall C W, Bradley E F, Hare J E, et al. Bulk parameterization of air-sea fluxes: updates and verification for the COARE Algorithm[J]. Journal of Climate[J]. 2003, 16(4):571-591.DOI: 10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2 .
doi: 10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2
24 Wells N C, King-Hele S. Parametrization of tropical ocean heat flux[J]. Quarterly Journal of the Royal Meteorological Society. 1990, 116(495):1213-1224. DOI:10.1002/qj.49711649511 .
doi: 10.1002/qj.49711649511
25 Du Y L, Yang X F, Jian Y,et al. Effects of temperature on sea surface radar backscattering under neutral and nonneutral atmospheric conditions for wind retrieval applications: a numerical study[J]. IEEE Transactions on Geoscience and Remote Sen-sing,2021,59(4):2727-2743. DOI:10.1109/TGRS.2020. 3013980 .
doi: 10.1109/TGRS.2020. 3013980
26 Boisvert L, Vihma T, Shie C L. Evaporation from the Southern Ocean estimated on the basis of AIRS satellite data [J]. Journal of Geophysical Research: Atmospheres, 2020, 125: e2019JD030845. DOI: 10.1029/2019JD030845 .
doi: 10.1029/2019JD030845
27 Lu Naimeng, Gu Songyan. Review and prospect on the development of meteorological satellites[J]. Journal of Remote Sensing, 2016, 20(5): 832-841.
27 卢乃锰,谷松岩.气象卫星发展回顾与展望[J].遥感学报,2016,20(5):832-841].
28 Lin Mingsen, He Xianqiang, Jia Yongjun, et al. Advances in marine satellite remote sensing technology in China[J]. Haiyang Xuebao, 2019,41(10): 99-112.
28 林明森,何贤强,贾永君,等. 中国海洋卫星遥感技术进展[J]. 海洋学报, 2019,41(10):99-112.
[1] 程思行,徐娜,吴荣华,胡秀清,何玉青,肖达,汪子意. 基于月球观测的FY-3D MERSI-II在轨通道亚像元配准[J]. 遥感技术与应用, 2021, 36(5): 1072-1082.
[2] 谷松岩,郭杨,窦芳丽,吴琼,卢乃锰. 风云三号微波大气探测载荷辐射定标[J]. 遥感技术与应用, 2021, 36(1): 141-154.
[3] 郭梦辉,季亚南,柯樱海,陈少辉. 土地利用变化下北京市热通量的时空演变[J]. 遥感技术与应用, 2020, 35(5): 1218-1225.
[4] 武黎黎,陈月庆,朱明,李晓峰,赵凯. 一种基于雪粒径演化过程的积雪亮温模拟新方法[J]. 遥感技术与应用, 2020, 35(3): 606-614.
[5] 范悦,邱建秀,董建志,张小虎,王大刚. 基于Triple Collocation方法的微波土壤水分产品不确定性分析与时空变化规律研究[J]. 遥感技术与应用, 2020, 35(1): 85-96.
[6] 谷松岩,王振占,卢乃锰,杨忠东,李靖,张升伟,杨磊,吴雪宝. 风云三号微波湿度计航空校飞辐射定标原理及数据分析[J]. 遥感技术与应用, 2019, 34(6): 1205-1211.
[7] 王振占,李娇阳. 风云三号卫星微波探测仪定标原理及算法[J]. 遥感技术与应用, 2019, 34(6): 1197-1204.
[8] 张帅,师春香,梁晓,贾炳浩,吴捷. 风云三号积雪覆盖产品评估[J]. 遥感技术与应用, 2018, 33(1): 35-46.
[9] 陈卫英,刘高峰,何嘉恺,潘莉. 降低微波成像仪接收机非线性偏差方法研究[J]. 遥感技术与应用, 2017, 32(1): 121-125.
[10] 武黎黎,李晓峰,赵凯,郑兴明,丁艳玲,李洋洋,任建华. 被动微波雪深反演算法在东北地区的时空分析与验证[J]. 遥感技术与应用, 2015, 30(3): 565-572.
[11] 侯小刚,张璞,郑照军,李帅. 基于多源数据的阿勒泰地区雪深反演研究[J]. 遥感技术与应用, 2015, 30(1): 178-185.
[12] 吴 琼,杨 磊,杨 虎. FY-3B微波成像仪图像质量评价[J]. 遥感技术与应用, 2012, 27(4): 542-548.
[13] 潘 碑,吴 季. 干涉式被动微波成像仪二维频谱特征及误差分析[J]. 遥感技术与应用, 2007, 22(3): 410-415.
[14] 孙知文,施建成,杨 虎,蒋玲梅,彭 亮. 风云三号微波成像仪积雪参数反演算法初步研究[J]. 遥感技术与应用, 2007, 22(2): 264-267.
[15] 高 飞 张俊荣. 星载微波成像仪接收通道的仿真研究[J]. 遥感技术与应用, 1998, 13(3): 24-29.