Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (6): 1373-1384    DOI: 10.11873/j.issn.1004-0323.2022.6.1373
土壤水分专栏     
基于SMOS、SMAP数据的青藏高原季风及植被生长季土壤水分长消特征研究
杨娜1(),汤燕杰2(),张宁馨3,张恒杰1,徐少博1
1.河南理工大学 测绘与国土信息工程学院,河南 焦作 454000
2.中国矿业大学(北京) 地球科学与测绘工程学院,北京 100083
3.武汉市常青第一学校,湖北 武汉 430024
Research on the Characteristics of Soil Moisture in the Qinghai-Tibet Plateau During Monsoon and Vegetation Growing Season based on SMOS and SMAP Data
Na Yang1(),Yanjie Tang2(),Ningxin Zhang3,Hengjie Zhang1,Shaobo Xu1
1.School of Surveying and Land Information Engineering,Henan Polytechnic University,Jiaozuo 454000,China
2.School of Geosciences and Surveying Engineering,China University of Mining and Technology,Beijing 100083,China
3.Wuhan Changqing No. 1School,Wuhan 430024,China
 全文: PDF(5257 KB)   HTML
摘要:

青藏高原地理位置特殊、环境特征显著,是地球系统作用的关键参与和决策者。利用大尺度的星载微波遥感数据开展其土壤水分研究,不仅能为理解典型地区对全球水、气、能、热交互机制的量化影响提供理论支持,还能够为证实遥感数据的可靠性提供实践依据。以SMOS(2011—2020)和SMAP(2016—2020)卫星土壤水分数据为主,以ISMN实测数据、GPCP降水数据、MOD16A2蒸散发数据、C3S地表类型数据为辅,利用土壤水分(年均值,θsatˉ)与时间之间的相关系数(Rxt),研究青藏高原土壤水分在季风及植被生长季(7—9月)的时空分布及长消特征;进而利用偏相关系数(Rxy,?z),初步分析了土壤水分与降水和蒸散发的耦合关系。结果显示,青藏高原土壤水分在时间上呈现先减(2011—2015年)后增(2015—2018年)随后波动变化(2018—2020年)的趋势,在空间上呈现自西北向东南逐渐升高的趋势;大部分地区的土壤水分与降水的耦合表现强于蒸散发;SMOS和SMAP对青藏高原土壤水分时空特征的捕捉具有较高的一致性。

关键词: 青藏高原土壤水分时空分布SMOSSMAP    
Abstract:

The Qinghai-Tibet Plateau has a special geographical location and remarkable environmental characteristics, and it is a key participant and decision-maker in the role of the Earth system. Using large-scale satellite microwave remote sensing data to study soil moisture can not only provide theoretical support for understanding the quantitative impact of typical regions on the global water, air, energy and heat interaction mechanism, but also provide practical basis for confirming the reliability of remote sensing data. Based on SMOS (2011—2020) and SMAP (2016—2020) satellite soil moisture data, supplemented by ISMN data, GPCP precipitation data, MOD16A2 evapotranspiration data and C3S surface landcover data, this paper studied the temporal and spatial variability of soil moisture over the Tibetan Plateau during the monsoon and vegetation growing season. Based on the annual mean value of soil moisture(θsatˉ) and the correlation coefficient between soil moisture and time (Rxt), the temporal and spatial distribution and long-term dissipation characteristics of soil moisture in the monsoon and vegetation growing season (July-September) of the Qinghai-Tibet Plateau were studied. Combined with the partial correlation coefficient (Rxy,z) the coupling relationship between precipitation and evapotranspiration was preliminaries analyzed. The results showed that the soil moisture decreased first (2011—2015) and then increased (2015—2018) and volatility change subsequently in time, and gradually increased from northwest to southeast in space. The coupling between soil moisture and precipitation was stronger than evapotranspiration in most areas of the Tibetan Plateau. SMOS and SMAP have a high consistency in capturing spatial and temporal characteristics of soil moisture over the Tibetan Plateau.

Key words: Qinghai Tibet Plateau    Soil moisture    Temporal and spatial distribution    SMOS    SMAP
收稿日期: 2022-07-07 出版日期: 2023-02-15
ZTFLH:  TP701  
基金资助: NSFC-区域创新发展联合基金重点项目(U21A20108)
通讯作者: 汤燕杰     E-mail: yangna@hpu.edu.cn;tangyanjie@student.cumtb.edu.cn
作者简介: 杨 娜(1980-),女,黑龙江大庆人,讲师,主要从事微波土壤水分反演与应用研究。E?mail:yangna@hpu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨娜
汤燕杰
张宁馨
张恒杰
徐少博

引用本文:

杨娜, 汤燕杰, 张宁馨, 张恒杰, 徐少博. 基于SMOS、SMAP数据的青藏高原季风及植被生长季土壤水分长消特征研究[J]. 遥感技术与应用, 2022, 37(6): 1373-1384.

Na Yang, Yanjie Tang, Ningxin Zhang, Hengjie Zhang, Shaobo Xu. Research on the Characteristics of Soil Moisture in the Qinghai-Tibet Plateau During Monsoon and Vegetation Growing Season based on SMOS and SMAP Data. Remote Sensing Technology and Application, 2022, 37(6): 1373-1384.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.6.1373        http://www.rsta.ac.cn/CN/Y2022/V37/I6/1373

数据控制条件控制量

SMOS

(MIR_SMUDP2)

DQX(the Data Quality Index)>0
Science_Flags(Bit 1)==0

SMAP

(L2_SM_P)

static water fraction<5%
urban area<25%
precipitation/snow/permanent ice/frozen ground fraction<5%
slope standard deviation<3%
表1  SMOS和SMAP土壤水分数据质量控制条件
土壤温度站网5月6月7月8月9月10月
5MAQU
NAQU
NGARI
4MAQU
NAQU
NGARI
3MAQU
NAQU
NGARI
表2  3站网5 cm土壤温度分布状况
图1  青藏高原土壤水分变化趋势
图2  青藏高原地区7—9月SMOS、SMAP多年平均土壤水分空间分布 审图号:2019(1819)
图3  青藏高原7-9月SMOS、SMAP年平均土壤水分时空变化特征 审图号:2019(1819)
图4  青藏高原地区基于SMOS、SMAP格网的降水与蒸散发时空变化特征 审图号:2019(1819)
类别SMOS/%SMAP/%
低矮植被农田7.809.45
草地92.2090.55
林地森林87.1489.17
灌木1.371.27
稀疏植被11.499.55
裸地裸地100.00100.00
表3  青藏高原地区各地类在所属大类中的占比
图5  青藏高原地区基于SMOS、SMAP格网的主要地表类型分布 审图号:2019(1819)
图6  青藏高原地区土壤水分与降水、蒸散发间偏相关系数空间分布图 审图号:2019(1819)
图7  青藏高原地区不同地类下偏相关系数格点数目占比
1 Li Bingyuan, Pan Baotian, Cheng Weiming, et al. Research on geomorphological regionalization of China[J]. Acta Geographica Sinica, 2013, 68(3): 291-306.
1 李炳元, 潘保田, 程维明,等.中国地貌区划新论[J]. 地理学报,2013,68(3): 291-306.
2 Yang Aoli, Zheng Donghai, Wen Jun,et al. Progress on L-band microwave radiometry observation and soil moisture retrieval over the Tibetan Plateau[J]. Remote Sensing Technology and Application,2021,36(5): 983-996.
2 杨奥莉, 郑东海, 文军, 等. 青藏高原L波段微波辐射观测与土壤水分反演研究进展[J]. 遥感技术与应用, 2021,36(5):983-996.
3 Zhang Yong, Liu Shiyin, Wang Xin. Debris-cover effect in the Tibetan Plateau and surroundings: A review[J]. Journal of Glaciology and Geocryology, 2022, 44(2): 1-14.
3 张勇, 刘时银, 王欣. 青藏高原及周边冰川区表碛影响研究进展[J]. 冰川冻土, 2022, 44(2): 1-14.
4 Yao Tandong. TPE international program: A program for coping with major future environmental challenges of The Third Pole Region[J]. Progress in Geography,2014,33(7): 884-892.
4 姚檀栋. “第三极环境(TPE)”国际计划——应对区域未来环境生态重大挑战问题的国际计划[J]. 地理科学进展,2014,33(7):884-892.
5 Kang S, Xu Y, You Q, et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters, 2010, 5(1): 015101. DOI:10.1088/1748-9326/5/1/015101 .
doi: 10.1088/1748-9326/5/1/015101
6 Xu Xiangde, Dong lili, Zhao yang, et al. Effect of the asian water tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation (in Chinese)[J]. Chin Sci Bull, 2019, 64(27): 2830–2841.
6 徐祥德, 董李丽, 赵阳, 等. 青藏高原“亚洲水塔”效应和大气水分循环特征[J]. 科学通报, 2019, 64(27): 2830-2841.
7 Yang Yaoxian, Hu Zeyong, Lu Fuquan, al et, Progress of recent 60 years' climate change and its environmental impacts on the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2022, 41(1): 1-10.
7 杨耀先, 胡泽勇, 路富全, 等. 青藏高原近60年来气候变化及其环境影响研究进展[J]. 高原气象, 2022, 41(1): 1-10.
8 Song Z, Feng Q, Gao Z, et al. Temporal and spatial differences and driving factors of evapotranspiration from terrestrial ecosystems of the Qinghai Province in the past 20 years[J].Water,2022,14(4):536. DOI:10.3390/w14040536 .
doi: 10.3390/w14040536
9 Yao Tandong, Wu Guangjian, Xu Baiqing, et al. Asian water tower change and its impacts[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1203-1209.
9 姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1203-1209.
10 Cheng G, Wu T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research-Earth Surface, 2007, 112(F2): F02S03. DOI:10.1029/2006JF000631 .
doi: 10.1029/2006JF000631
11 Cui Y, Zeng C, Zhou J, et al. A spatiotemporal continuous soil moisture dataset over the Tibet Plateau from 2002 to 2015[J]. Scientific Data, 2019, 6: 247. DOI: 10.1038/s41597-019-0228-x .
doi: 10.1038/s41597-019-0228-x
12 Yang Kun, Tang Qiuhong, Lu Hui. Precipitation recycling ratio and water vapor sources on the Tibetan Plateau[J]. Science China Earth Sciences,2022,65(3): 574-578.
12 阳坤, 汤秋鸿, 卢麾. 青藏高原降水再循环率与水汽来源辨析[J]. 中国科学:地球科学, 2022, 52(3): 574-578.
13 Xu Xiangde, Ma Yaoming, Sun Chan, et al. Effect of energy and water circulation over Tibetan Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11):1293-1305.
13 徐祥德, 马耀明, 孙婵, 等. 青藏高原能量、水分循环影响效应[J]. 中国科学院院刊, 2019, 34(11): 1293-1305.
14 Wang Lei, Li Xiuping, Zhou Jing, et al. Hydrological modelling over the Tibetan Plateau: Current status and perspective[J]. Advances in Earth Science, 2014, 29(6) :674-682.
14 王磊, 李秀萍, 周璟, 等. 青藏高原水文模拟的现状及未来[J]. 地球科学进展, 2014, 29(6): 674-682.
15 Zhu Yanxin, Sang Yanfang. Spatial variability in the seasonal distribution of precipitation on the Tibetan Plateau[J]. Progress in Geography, 2018, 37(11): 1533- 1544.
15 朱艳欣, 桑燕芳. 青藏高原降水季节分配的空间变化特征[J]. 地理科学进展, 2018, 37(11): 1533-1544.
16 Bibi S, Wang L, Li X, et al. Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: A review[J]. International Journal of Climatology, 2018, 38(S1): e1-e17. DOI:10.1002/joc.5411 .
doi: 10.1002/joc.5411
17 Liu Kun, Yu Cigang, Zhang YF, et al. Research status and current hotspots on the human impact on natural reserves in the Qinghai-Tibetan Plateau [J]. Chin J Appl Environ Biol, 2022, 28 (2): 508-516.
17 刘坤, 于赐刚, 张艺凡, 等. 青藏高原自然保护区人类活动及其影响研究现状与热点[J]. 应用与环境生物学报, 2022, 28(2): 508-516.
18 Ma Yaoming, Hu Zeyong, Tian Lide, et al. Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia[J]. Advances in Earth Science, 2014, 29(2): 207-215.
18 马耀明, 胡泽勇, 田立德, 等. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展, 2014, 29(2): 207-215.
19 Wang Xiangyu, Gao Peichao, Song Changqing, et al. Connotation and evaluation of high-quality development in counties of the Qinghai-Tibet Plateau[J]. Journal of Beijing Normal University(Natural Science Edition), 2022,58(2):328-336.
19 王翔宇, 高培超, 宋长青, 等. 区域高质量发展的内涵与评价体系探索——以青藏高原县域单元为例[J]. 北京师范大学学报(自然科学版), 2022, 58(2): 328-336.
20 Duan H, Xue X, Wang T, et al. Spatial and temporal differences in alpine meadow, alpine steppe and all vegetation of the Qinghai-Tibetan Plateau and their responses to climate change[J]. Remote Sensing,2021,13(4):669. DOI:10.3390/rs 13040669 .
doi: 10.3390/rs 13040669
21 Yu Yang, Wei Wei, Chen Liding, et al. Coupling effects of different land preparation and vegetation on soil moisture characteristics in a Semi-Arid Loess Hilly Region[J].Acta Ecologica Sinica, 2016, 36(11): 3441-3449.
21 于洋, 卫伟, 陈利顶, 等. 黄土丘陵区坡面整地和植被耦合下的土壤水分特征[J]. 生态学报, 2016, 36(11): 3441-3449.
22 Cao W, Sheng Y, Wu J, et al. Differential response to rainfall of soil moisture infiltration in permafrost and seasonally frozen ground in Kangqiong Small Basin on the Qinghai-Tibet Plateau[J]. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 2021, 66(3): 525-543. DOI:10.1080/02626667.2021.1883619 .
doi: 10.1080/02626667.2021.1883619
23 Zhu X, Wu T, Hu G, et al. Long-Distance atmospheric moisture dominates water budget in permafrost regions of the Central Qinghai-Tibet Plateau[J]. Hydrological Processes,2020, 34(22): 4280-4294. DOI:10.1002/hyp.13871 .
doi: 10.1002/hyp.13871
24 Fu Qing, Yang Kun, Zheng Donghai, et al. Impact of soil organic matter content on soil moisture and temperature at different depths in the Central Qinghai-Xizang Plateau[J]. Plateau Meteorology,2021,40(5):1-11.
24 符晴, 阳坤, 郑东海, 等. 青藏高原中部土壤有机质含量对不同深度土壤温湿度的影响研究[J]. 高原气象,2021,40(5):1-11.
25 Yang Kai, Wang Genxu, Zhang Tao, et al. Responses of root functional traits to experimental warming in the alpine meadow with different soil moisture in the permafrost region of the Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica,2020,40(18): 6362-6373.
25 杨凯, 王根绪, 张涛, 等. 青藏高原多年冻土区不同水分条件的高寒草甸根系功能性状对增温的响应[J]. 生态学报, 2020, 40(18): 6362-6373.
26 Dai L, Fu R, Guo X,et al. Soil moisture variations in response to precipitation across different vegetation types on the Northeastern Qinghai-Tibet Plateau[J]. Frontiers in Plant Science,2022,6(13):854152. DOI:10.3389/fpls.2022.854152 .
doi: 10.3389/fpls.2022.854152
27 Zhou Caijing, Liu Jun, Wang Yihuan, et al. Effect of organic compounds content and types on soil water retention dapacity[J]. Journal of Northwest A and F University(Natural Science Edition),2008,36(12): 115-120,128.
27 周彩景, 刘军, 王益权, 等. 有机物质类型与含量对土壤持水性能的影响[J]. 西北农林科技大学学报(自然科学版), 2008,36(12):115-120,128.
28 Yao Tandong, Chen Fahu, Cui Peng, et al. From Tibetan Plateau to Third Pole and Pan-Third Pole[J]. Bulletin of Chinese Academy of Sciences,2017,32(9):924-931.
28 姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极[J]. 中国科学院院刊, 2017,32(9):924-931.
29 Yao Tandong. A comprehensive study of water-ecosystem-human activities reveals unbalancing asian water tower and accompanying potential risks[J].Chinese Science Bulletin,2019,64(27):2761-2762.
29 姚檀栋. 青藏高原水—生态—人类活动考察研究揭示“亚洲水塔”的失衡及其各种潜在风险[J]. 科学通报, 2019, 64(27): 2761-2762.
30 Ding Xu, Lai Xin, Fan Guangzhou, et al. Analysis on the applicability of reanalysis soil temperature and moisture datasets over Qinghai-Tibetan Plateau[J].Plateau Meteorology,2018, 37(3): 626-641.
30 丁旭, 赖欣, 范广洲, 等. 再分析土壤温湿度资料在青藏高原地区适用性的分析[J]. 高原气象, 2018, 37(3): 626-641.
31 Ma Yaoming, Hu Zeyong, Wang Binbin, et al. The review of the observation experiments on land-atmosphere interaction progress on the Qinghai-Xizang(Tibetan)Plateau[J]. Plateau Meteorology, 2021, 40(6):1241-1262.
31 马耀明, 胡泽勇, 王宾宾, 等. 青藏高原多圈层地气相互作用过程研究进展和回顾[J]. 高原气象, 2021, 40(6): 1241-1262.
32 Yang K, Qin J, Zhao L, et al. A Multiscale soil moisture and freeze-thaw monitoring network on the Third Pole[J]. Bulletin of the American Meteorological Society,2013,94(12):1907-1916. DOI:10.1175/BAMS-D-12-00203.1 .
doi: 10.1175/BAMS-D-12-00203.1
33 Jin Chenlin. Comparative evaluation of SMAP,CCI, CLDAS soil moisture products in typical region of Qinghai-Tibet Plateau[J]. Journal of Subtropical Resources and Environment, 2020, 15(1):85-94.
33 荆琛琳. SMAP、CCI和CLDAS土壤湿度产品在青藏高原典型区域的比较验证[J]. 亚热带资源与环境学报, 2020, 15(1):85-94.
34 Liu Chuan, Yu Hui, Xie Jin, et al. Applicability of soil temperature and moisture in several datasets over Qinghai-Xizang Plateau[J]. Plateau Meteorology,2015,34(3):653-665.
34 刘川, 余晔, 解晋, 等. 多套土壤温湿度资料在青藏高原的适用性[J]. 高原气象, 2015, 34(3): 653-665.
35 Zhuo Ga, Chen Tao, Zhou Kanshe, et al. Spatial and temporal distribution of soil moisture over the Tibetan Plateau during 2009-2010[J]. Journal of Glaciology and Geocryology, 2015, 37(3):625-634.
35 卓嘎, 陈涛, 周刊社, 等. 2009-2010年青藏高原土壤湿度的时空分布特征[J]. 冰川冻土,2015,37(3):625-634.
36 Bai W, Chen X, Tang Y, et al. Temporal and spatial changes of soil moisture and its response to temperature and precipitation over the Tibetan Plateau[J]. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 2019, 64(11): 1370-1384. DOI: 10.1080/02626667.2019.1632459 .
doi: 10.1080/02626667.2019.1632459
37 Cheng M, Zhong L, Ma Y, et al. A Study on the assessment of multi-source satellite soil moisture products and reanalysis data for the Tibetan Plateau[J]. Remote Sensing, 2019, 11(10): 1196. DOI: 10.3390/rs11101196 .
doi: 10.3390/rs11101196
38 Shi P, Zeng J, Chen K, et al. The 20-year spatiotemporal trends of remotely sensed soil moisture and vegetation and their response to climate change over the Third Pole[J]. Journal of Hydrometeorology, 2021, 22(11):2877-2896.DOI:10.1175/JHM-D-21-0077.1 .
doi: 10.1175/JHM-D-21-0077.1
39 Wu Zemian, Qiu Jianxiu, Liu Suxia, et al. Advances in agricultural drought monitoring based on soil moisture[J]. Progress in Geography, 2020, 39(10): 1758-1769.
39 吴泽棉, 邱建秀, 刘苏峡, 等. 基于土壤水分的农业干旱监测研究进展[J]. 地理科学进展, 2020, 39(10): 1758-1769.
40 Zheng Xingming, Zhao Kai, Li Xiaofeng, et al. Moisture derived from microwave remote sensing in Northeast China[J]. Scientia Geographica Sinica, 2015,35(3):334-339.
40 郑兴明, 赵凯, 李晓峰, 等. 利用微波遥感土壤水分产品监测东北地区春涝范围和程度[J]. 地理科学, 2015, 35(3): 334-339.
41 Mishra A, Vu T, Veettil A V, et al. Drought monitoring with Soil Moisture Active Passive (SMAP) Measurements[J]. Journal of Hydrology, 2017, 552: 620-632.DOI:10.1016/j.jhydrol.2017.07.033 .
doi: 10.1016/j.jhydrol.2017.07.033
42 Sadri S, Pan M, Wada Y, et al. A global near-real-time soil moisture index monitor for food security using integrated SMOS and SMAP[J]. Remote Sensing of Environment, 2020, 246: 111864. DOI:10.1016/j.rse.2020.111864 .
doi: 10.1016/j.rse.2020.111864
43 Hu F, Wei Z, Yang X, et al. Assessment of SMAP and SMOS soil moisture products using triple collocation method over Inner Mongolia[J]. Journal of Hydrology-Regional Studies, 2022, 40: 101027. DOI:10.1016/j.ejrh.2022.101027 .
doi: 10.1016/j.ejrh.2022.101027
44 Liu J, Chai L, Lu Z, et al. Evaluation of SMAP, SMOS-IC, FY3B, JAXA, and LPRM soil moisture products over the Qinghai-Tibet Plateau and its surrounding areas[J]. Remote Sensing, 2019, 11(7): 792. DOI:10.3390/rs11070792 .
doi: 10.3390/rs11070792
45 Wu X, Lu G, Wu Z, et al. Triple collocation-based assessment of satellite soil moisture products with In situ measurements in China: Understanding the Error Sources[J]. Remote Sensing, 2020, 12(14): 2275. DOI:10.3390/rs12142275 .
doi: 10.3390/rs12142275
46 Zhang L, He C, Zhang M, et al. Evaluation of the SMOS and SMAP soil moisture products under different vegetation types against two sparse in situ networks over arid mountainous watersheds, Northwest China[J]. Science China(Earth Sciences), 2019, 62(4): 703-718.
47 Meng Yue, Wang Dagang, Lin Yongen,et al.Comparative eva-luation and difference analysis of SMOS and SMAP satellite remote sensing soil moisture products[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(5):1-13.
doi: 10.13471/j.cnki.acta.snus.2021D049
47 孟越,王大刚,林泳恩,等. SMOS和SMAP卫星土壤水分产品的对比评价与差异分析[J]. 中山大学学报(自然科学版),2022,61(5):1-13.DOI:10.13471/j.cnki.acta.snus.2021D049 .
doi: 10.13471/j.cnki.acta.snus.2021D049
48 Shi Jiali, Zhang Xiaolong, Min Leilei, et al. Adaptability evaluation of soil moisture products in the Hebei Plain[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 809-819.
48 石嘉丽, 张晓龙, 闵雷雷, 等. 多源土壤水分产品在河北平原的适用性评价[J]. 中国生态农业学报(中英文),2022,30(5): 809-819.
49 Zhang L, He C, Zhang M, et al. Evaluation of the SMOS and SMAP soil moisture products under different vegetation types against two sparse in situ networks over arid mountainous watersheds,Northwest China[J].Science China-Earth Sciences,2019,62(4):703-718. DOI:10.1007/s11430-018-9308-9 .
doi: 10.1007/s11430-018-9308-9
50 SMOS_L 2 _Aux_Data_Product_Specification.pdf[M].Indra Sistemas S.A., Madrid, Spain, 2017.
51 Chan S K, Bindlish R, O’Neill P E, et al. Assessment of the SMAP passive soil moisture product[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4994-5007. DOI:10.1109/TGRS.2016.2561938 .
doi: 10.1109/TGRS.2016.2561938
52 Burgin M S, Colliander A, Njoku E G, et al. A comparative study of the SMAP passive soil moisture product with existing satellite-based soil moisture products[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,55(5): 2959-2971. DOI:10.1109/TGRS.2017.2656859 .
doi: 10.1109/TGRS.2017.2656859
53 Dorigo W A, Wagner W, Honensinn R, et al. The international soil moisture network: A data hosting facility for global in situ soil moisture measurements[J]. Hydrology and Earth System Sciences, 2011, 15(5): 1675-1698.DOI:10.5194/hess-15-1675-2011 .
doi: 10.5194/hess-15-1675-2011
54 Adler R F, Huffman G J, Chang A, et al. The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis(1979-Present)[J]. Jo-urnal of Hydrometeorology,2003,4(6):1147-1167. DOI:10.1175/15257541 (2003)004<1147:TVGPCP>2.0.CO;2 .
doi: 10.1175/15257541 (2003)004<1147:TVGPCP>2.0.CO;2
55 Adler R F, Sapiano M R P, Huffman G J, et al. The Global Precipitation Climat-ology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation[J].Atmosphere,2018,9(4):138.DOI:0.3390/atmos 9040138 .
doi: 0.3390/atmos 9040138
56 Wu Guiping, Liu Yuanbo, Zhao Xiaosong, et al. Spatio-temporal variations of evapotranspiration in Poyang Lake Basin using MOD16 products[J]. Geographical Research, 2013, 32(4): 617-627.
56 吴桂平, 刘元波, 赵晓松, 等. 基于MOD16产品的鄱阳湖流域地表蒸散量时空分布特征[J]. 地理研究, 2013,32(4):617-627.
57 Liu R, Wen J, Wang X, et al. Validation of evapotranspiration and it's long-term trends in the Yellow River source region[J]. Journal of Water and Climate Change, 2017, 8(3): 495-509. DOI:10.2166/wcc.2017.134 .
doi: 10.2166/wcc.2017.134
58 Cheng M, Zhong L, Ma Y, et al. A study on the assessment of multi-source satellite soil moisture products and reanalysis data for the Tibetan Plateau[J].Remote Sensing,2019,11(10): 1196. DOI:10.3390/rs11101196 .
doi: 10.3390/rs11101196
59 Lin Zhenyao, Wu Xiangding. Climatic regionalization of the Qinghai-Xizang Plateau[J]. Acta Geographica Sinica,1981,36(1):22-32.
59 林振耀, 吴祥定. 青藏高原气候区划[J]. 地理学报, 1981,36(1): 22-32.
60 Shi Lei, Du Jun, Zhou Kanshe, et al. The temporal-spatial variations of soil moisture over the Tibetan Plateau during 1980-2012[J].Journal of Glaciology and Geocryology, 2016, 38(5): 1241-1248.
60 石磊, 杜军, 周刊社, 等. 1980-2012年青藏高原土壤湿度时空演变特征[J]. 冰川冻土, 2016, 38(5):1241-1248.
61 Wu Xiaoli, Liu Guimin, Li Xinxing, et al. Variation of soil moisture and its relation with precipitation of permafrost and seasonally frozen soil regions on the Qinghai-Tibet Plateau[J]. Journal of China Hydrology, 2021,41(1): 73-78,101.
61 吴小丽, 刘桂民, 李新星, 等. 青藏高原多年冻土和季节性冻土区土壤水分变化及其与降水的关系[J]. 水文, 2021, 41(1): 73-78,101.
62 Mohammed P N, Aksoy M, PiepmeieJ R, et al. SMAP L-band microwave radiometer: RFI mitigation prelaunch analysis and first year on-orbit observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6035-6047. DOI:10.1109/TGRS.2016.2580459 .
doi: 10.1109/TGRS.2016.2580459
63 Zeng J Y, Shi P F, Chen K S, et al. Assessment and error analysis of satellite soil moisture products over the Third Pole[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:44054181.1-18. DOI:10.1109/TGRS. 2021. 3116078 .
doi: 10.1109/TGRS. 2021. 3116078
[1] 曹高岩,杨娜. 基于关键辅助参数数据的L-MEB亮度温度模拟研究[J]. 遥感技术与应用, 2022, 37(6): 1385-1391.
[2] 杨娜,徐少博,劳从坤,张恒杰,汤燕杰. L波段微波辐射计机载与卫星观测的对比研究[J]. 遥感技术与应用, 2022, 37(6): 1361-1372.
[3] 黄健庭,杨娜,马超. SMAP L2多尺度土壤水分数据与ISMN实测数据的差异特征研究[J]. 遥感技术与应用, 2022, 37(6): 1392-1403.
[4] 杜绍杰,赵天杰,施建成,马春锋,邹德富,王振,姚盼盼,彭志晴,郑景耀. Sentinel-1和Sentinel-2协同反演地表土壤水分[J]. 遥感技术与应用, 2022, 37(6): 1404-1413.
[5] 黄钰玲,刘凯,王树东,王大成,苑峰,王保林,景文,王伟. 北方典型区域遥感和模型土壤水分产品的对比及评估[J]. 遥感技术与应用, 2022, 37(6): 1414-1426.
[6] 方西瑶,蒋玲梅,崔慧珍. 基于Sentinel-1雷达数据的青藏高原地区土壤水分反演研究[J]. 遥感技术与应用, 2022, 37(6): 1447-1459.
[7] 王雪琴,张翔,陈能成,马宏亮. 基于时空变异性的土壤水分观测网设计[J]. 遥感技术与应用, 2022, 37(6): 1437-1446.
[8] 晏红波,李浩,卢献健,王佳华. 基于LST-VI特征空间的喀斯特地区土壤水分时空变化研究[J]. 遥感技术与应用, 2022, 37(6): 1460-1471.
[9] 段旭辉,徐维新,梁好,张娟,代娜,肖强智,王淇玉. 三江源地区高寒冬季枯草遥感监测方法研究[J]. 遥感技术与应用, 2022, 37(6): 1472-1481.
[10] 张朋杰,杨晓锋,张涛,韩东明,陈思宇. 2000—2020年秦巴山区水源涵养量时空动态研究[J]. 遥感技术与应用, 2022, 37(6): 1513-1524.
[11] 袁艺溶,王继燕,杨嘉葳,熊俊楠. 基于植被指数的若尔盖高原湿地光合有效辐射吸收比例估算研究[J]. 遥感技术与应用, 2022, 37(5): 1267-1276.
[12] 蔡俊飞,赵伟,杨梦娇,詹琪琪,付浩,何坤龙. 基于GLASS数据的青藏高原2001—2018年蒸散发时空变化分析[J]. 遥感技术与应用, 2022, 37(4): 888-896.
[13] 马佳培,李弘毅. 改进频率分布和风速纠正的青藏高原格点降水数据集(1980~2009年)[J]. 遥感技术与应用, 2022, 37(2): 507-514.
[14] 赵天玮,朱文彬,裴亮,宝康妮. 三江源蒸散发遥感估算及其时空分布特征研究[J]. 遥感技术与应用, 2022, 37(1): 137-147.
[15] 葛强,沈文举,李冉,李莘莘,蔡坤,左宪禹,乔保军,张云舟. 2001~2018年我国热异常点时空分布特征研究[J]. 遥感技术与应用, 2022, 37(1): 73-84.