Please wait a minute...
img

官方微信

遥感技术与应用  2022, Vol. 37 Issue (6): 1427-1436    DOI: 10.11873/j.issn.1004-0323.2022.6.1427
土壤水分专栏     
起伏地表的微波辐射特征模拟与地面实验
刘婷1,3,4(),赵少杰2(),陈迪言2,刘素红4,柴琳娜2
1.新疆大学 资源与环境科学学院,新疆 乌鲁木齐 830046
2.地表过程与资源生态国家重点实验室,北京师范大学 地理科学学部,北京 100875
3.新疆大学绿洲生态教育部重点实验室,新疆 乌鲁木齐 830046
4.北京师范大学 地理科学学部,北京 100875
Simulation and Ground Experiment of Microwave Radiation Characteristics on Undulating Surface
Ting Liu1,3,4(),Shaojie Zhao2(),Diyan Chen2,Suhong Liu4,Linna Chai2
1.College of Resources and Environment Science,Xinjiang University,Urumqi 830046,China
2.Key Laboratory of Oasis Ecology of Ministry of Education,Xinjiang University,Urumqi 830046,China
3.State Key Laboratory of Earth Surface Processes and Resource Ecology,Faculty of Geographic Sciences,Beijing Normal University,Beijing 100875,China
4.Faculty of Geographic Sciences,Beijing Normal University,Beijing 100875,China
 全文: PDF(2040 KB)   HTML
摘要:

地形是影响地表微波辐射特征的重要因素之一。通过开展地基微波辐射计观测人工起伏地表的实验,结合改进的山区地表微波辐射模型,研究地形起伏与地表异质性对地表微波辐射亮温的影响,并根据实测数据对微波辐射模型进行了验证。结果表明:地形遮挡效应对地表微波辐射过程的影响与模型中几何光学的假设是一致的;模型模拟效果较好,实测数据与模拟数据随地形的变化趋势一致,考虑地表粗糙度后,实测值与模拟值之间的误差更小;地表异质性与地形起伏耦合使得H极化与V极化不同方位角观测亮温存在明显差异。这些结果为建立山区地表微波辐射亮温的地形校正模型提供了参考。

关键词: 被动微波遥感微波辐射模型地形效应遮挡效应地表异质性    
Abstract:

Topography is one of the important factors affecting the characteristics of surface microwave radiation. Based on the experiment of observing artificial undulating surface with ground-based microwave radiometer, and the improved mountain surface microwave radiation model, the influence of terrain undulating and surface heterogeneity on the brightness temperature of surface microwave radiation was studied, and the microwave radiation model was verified according to the empirical data. The better results show that the effect of terrain occlusion on surface microwave radiation is consistent with the geometric optics hypothesis in the model. The simulation effect of this model is good, the measured data and the simulated data are consistent with the change trend of terrain, the error between the measured value and the simulated value is smaller after considering the surface roughness. The coupling of surface heterogeneity and topographic relief results in obvious difference of brightness temperature observed at different azimuth angles of H polarization and V polarization. These results provide a reference for the topographic correction model of microwave brightness temperature on mountain surface.

Key words: Passive microwave remote sensing    Microwave radiation model    Terrain experiment    Shielding effect    Surface heterogeneity
收稿日期: 2021-12-13 出版日期: 2023-02-15
ZTFLH:  TP79  
基金资助: 国家自然科学基金项目(41871228);第二次青藏高原综合科学考察研究课题(2019QZKK0306)
通讯作者: 赵少杰     E-mail: lting_liu@163.com;shaojie.zhao@bnu.edu.cn
作者简介: 刘 婷(1998-),女,四川巴中人,硕士研究生,主要从事微波土壤水分反演研究。E?mail:lting_liu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘婷
赵少杰
陈迪言
刘素红
柴琳娜

引用本文:

刘婷,赵少杰,陈迪言,刘素红,柴琳娜. 起伏地表的微波辐射特征模拟与地面实验[J]. 遥感技术与应用, 2022, 37(6): 1427-1436.

Ting Liu,Shaojie Zhao,Diyan Chen,Suhong Liu,Linna Chai. Simulation and Ground Experiment of Microwave Radiation Characteristics on Undulating Surface. Remote Sensing Technology and Application, 2022, 37(6): 1427-1436.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2022.6.1427        http://www.rsta.ac.cn/CN/Y2022/V37/I6/1427

相关研究研究区域分辨率多方位角多入射角地形遮挡大气异质性
M?tzler等[12](2000)挪威1 000 m
Flores等[18](2009)无指定研究区10 m
Pierdicca等[19](2010)意大利北部250 m
Utku等[17](2011)美国亚利桑那州30 m
Guo等[14](2011)青藏高原东南部90 m
李欣欣等[11](2012)青藏高原1 000 m
Camps等[16](2016)无指定研究区450 m
表1  山区微波辐射模拟和辐射特征相关研究对比
图1  遮挡效应示意图
图2  观测场地示意图
辐射计观测高度/m椭圆视场长半轴/m椭圆视场短半轴/m起伏地表面积/视场面积
6.321.260.710.51
5.921.200.680.35
5.521.130.640.18
5.121.070.610.00
表2  X波段不同观测高度的辐射计视场大小与起伏地表面积占比
图3  辐射计实际观测地表
图4  遮挡效应验证结果
图5  平坦地表不同入射角的X波段地表发射率观测值与模拟值对比
图6  地形起伏与观测方位角对微波辐射亮温的影响
1 Yang Xinyuan, Bai Xiaojing. Retrieval of farmland surface soil moisture based on Sentinel-1 and MODIS data: A case study in REMEDHUS Region[J]. Remote Sensing Technology and Application, 2021, 36(5): 973-982.
1 杨欣源, 白晓静. 基于Sentinel-1和MODIS数据反演农田地表土壤水分——以REMEDHUS地区为例[J]. 遥感技术与应用,2021,36(5): 973-982.
2 Karthikeyan L, Pan M, Nagesh Kumar D, et al. Effect of structural uncertainty in passive microwave soil moisture retrieval algorithm[J]. Sensors,2020,20(4):1225-1225. DOI: 10.3390/s20041225 .
doi: 10.3390/s20041225
3 Sun H, Zhou B, Zhang C, et al. DSCALE_mod16: A Model for disaggregating microwave satellite soil moisture with land surface evapotranspiration products and gridded meteorological data[J]. Remote Sensing,2020,12(6): 980. DOI: 10.3390/rs12060980 .
doi: 10.3390/rs12060980
4 Yang Y, Dou Y, Liu D, et al. Spatial pattern and heterogeneity of soil moisture along a transect in a small catchment on the Loess Plateau[J]. Journal of Hydrology (Amsterdam),2017,550:466-477.
5 Moore I D, Burch G J, Mackenzie D H. Topographic effects on the distribution of surface soil water and the location of ephemeral Gullies[J]. Transactions of the ASAE,1988,31(4): 1098-1107.
6 Li Ainong, Yin Gaofei, Jin Hua 'an, et al. Principles and methods for the retrieval of biophysical variables in mountainous areas[J]. Remote Sensing Technology and Application, 2016,31(1):1-11.
6 李爱农, 尹高飞, 靳华安, 等. 山地地表生态参量遥感反演的理论、方法与问题[J]. 遥感技术与应用, 2016, 31(1):1-11.
7 Guo X, Fu Q, Hang Y, et al. Spatial variability of soil moisture in relation to land use types and topographic features on hillslopes in the black soil (Mollisols) area of Northeast China[J]. Sustainability,2020,12(9):3552. DOI:10.3390/su 12093552 .
doi: 10.3390/su 12093552
8 Pellarin T, Mialon A, Biron R, et al. Three years of L-band brightness temperature measurements in a mountainous area: Topography, vegetation and snowmelt issues[J]. Remote Sensing of Environment,2016,180: 85-98.
9 Zhao Tianjie.New development and future prospect of L-band soil moisture retrieval by passive microwave[J]. Progress in Geography, 2018,37(2):198-213.
9 赵天杰. 被动微波反演土壤水分的L波段新发展及未来展望[J]. 地理科学进展, 2018,37(2):198-213.
10 Mialon A, Coret L, Kerr Y. H, et al. Flagging the topographic impact on the SMOS signal[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(3): 689-694.
11 Li Xinxin, Zhang Lixin, Jiang Lingmei, et al. Effects of topography on microwave radiation characteristics and soil water retrieval in mountainous areas: A case study of The Tibetan Plateau [J]. Journal of Remote Sensing, 2012, 16(4): 850-867.
11 李欣欣, 张立新, 蒋玲梅, 等. 山区地形效应对微波辐射特征与土壤水分反演的影响——以青藏高原地区为例[J]. 遥感学报, 2012, 16(4): 850-867.
12 Mätzler C, Standley A. Technical note: Relief effects for passive microwave remote sensing[J]. International Journal of Remote Sensing,2000,21(12): 2403-2412.
13 Pulvirenti L, Pierdicca N, Marzano F S. Prediction of the error induced by topography in satellite microwave radiometric observations[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(9): 3180-3188.
14 Guo Y, Shi J, Du J, et al. Evaluation of terrain effect on microwave radiometer measurement and its correction[J]. International Journal of Remote Sensing,2011,32(24): 8899-8913.
15 Sandells M J, Davenport I J, Gurney R J. Passive L-band microwave soil moisture retrieval error arising from topography in otherwise uniform scenes[J]. Advances in Water Resources,2008,31(11): 1433-1443.
16 Camps A, Park H, Pablos M, et al. Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,9(10): 4730-4742.
17 Utku C, Le Vine D M. A Model for prediction of the impact of topography on microwave emission[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(1):395-405.
18 Flores A N, Ivanov V Y, Entekhabi D, et al. Impact of hillslope-scale organization of topography, soil moisture, soil yemperature, and vegetation on modeling surface microwave radiation emission[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(8): 2557-2571.
19 Pierdicca N, Pulvirenti L, Bignami C. Soil moisture estimation over vegetated terrains using multitemporal remote sensing data[J]. Remote Sensing of Environment,2010,114(2): 440-448.
20 Zhao T, Shi J, Lü L, et al. Soil moisture experiment in the Luan River supporting new satellite mission opportunities[J]. Remote Sensing of Environment,2020,240:111680. DOI: org/10.1016/j.rse.2020.111680 .
doi: org/10.1016/j.rse.2020.111680
21 Li Xinxin, Zhang Lixin, Jiang Lingmei, et al. Simulation and experiment of topography effect of passive Microwave radiation[J]. Journal of Remote Sensing, 2011,15(1):100-110.
21 李欣欣, 张立新,蒋玲梅, 等. 被动微波辐射特征地形效应模拟与实验[J]. 遥感学报, 2011, 15(1): 100-110.
22 Zhang Tao, Zhao Shaojie, Zhang Lixin, et al. A truckmountedmulti-frequency microwave radiometer and application of experimental data[J]. Remote Sensing Technology and Application,2015,30(5):1012-1020.
22 张涛, 赵少杰, 张立新, 等. 车载多频率微波辐射计与观测数据应用[J]. 遥感技术与应用, 2015, 30(5): 1012-1020.
23 Kirchhoff G. On the relation between the radiating and absorbing powers of different bodies for light and heat[J]. Philosophical Magazine,1860,20(130): 1-21.
24 Dobson M C, Ulaby F T, Hallikainen M T, et al. Microwave dielectric behavior of wet soil-part II: Dielectric mixing Models[J]. IEEE Transactions on Geoscience and Remote Sensing,1985,GE-23(1): 35-46.
25 Naess A, Gaidai O. Monte Carlo methods for estimating the extreme response of dynamical systems[J]. Journal of Engineering Mechanics,2008,134(8):628-636.
[1] 杨奥莉,郑东海,文军,陆宣承,杨越,符晴. 青藏高原L波段微波辐射观测与土壤水分反演研究进展[J]. 遥感技术与应用, 2021, 36(5): 983-996.
[2] 陈家利,郑东海,庞国锦,李新. 基于SMAP亮温数据反演青藏高原玛曲区域土壤未冻水[J]. 遥感技术与应用, 2020, 35(1): 48-57.
[3] 邱玉宝,郭华东,石利娟,施建成. 基于AMSR-E的全球陆表被动微波发射率数据集[J]. 遥感技术与应用, 2016, 31(4): 809-819.
[4] 赵伟,李爱农,张正健,边金虎,靳华安,尹高飞,南希,雷光斌. 基于Landsat8热红外遥感数据的山地地表温度地形效应研究[J]. 遥感技术与应用, 2016, 31(1): 63-73.
[5] 王琦,柴琳娜,赵少杰,张涛. 基于多角度微波辐射亮温数据反演冬小麦光学厚度[J]. 遥感技术与应用, 2015, 30(3): 424-430.
[6] 陈修治,陈水森,苏泳娴,李 丹,韩留生. 基于被动微波遥感的2008年广东省春季低温与典型作物寒害研究[J]. 遥感技术与应用, 2012, 27(3): 387-395.
[7] 顾玲嘉,赵凯,孙健,郑兴明. 被动微波遥感数据超分辨率增强与混合像元分解研究综述[J]. 遥感技术与应用, 2012, 27(1): 1-6.
[8] 顾玲嘉,赵凯,孙健,郑兴明. 被动微波遥感数据超分辨率增强与混合像元分解研究综述[J]. 遥感技术与应用, 2011, 27(1): 1-7.
[9] 李欣欣,张立新,蒋玲梅,赵少杰,赵天杰. 地形坡面对被动微波遥感影响的试验研究[J]. 遥感技术与应用, 2011, 26(1): 74-81.
[10] 陈昊, 金亚秋 . 星载微波辐射计对玉树地震岩石破裂辐射异常的初步检测[J]. 遥感技术与应用, 2010, 25(6): 860-866.
[11] 金亚秋, 陈昊, 谷松岩. AMSR-E数据散射与极化指数检测2008年1月中国南方冰雪灾害[J]. 遥感技术与应用, 2009, 24(6): 715-721.
[12] 白云洁, 卢 玲, 李 新, 车 涛. 积雪微波辐射亮温对积雪参数的敏感性分析——以多层积雪微波辐射模型为例[J]. 遥感技术与应用, 2009, 24(5): 622-630.
[13] 吴季,刘浩,阎敬业,孙伟英,张成,潘碑. 干涉式被动微波成像技术[J]. 遥感技术与应用, 2009, 24(1): 1-12.
[14] 秦 春,王 建. CIVCO地形校正模型的改进及其应用[J]. 遥感技术与应用, 2008, 23(1): 82-88.
[15] 孙知文,施建成,杨 虎,蒋玲梅,彭 亮. 风云三号微波成像仪积雪参数反演算法初步研究[J]. 遥感技术与应用, 2007, 22(2): 264-267.