Figure/Table detail

Fusion of Multiscale Low-rank Representation and Two Way Recursive Filtering for Hyperspectral Image Classification
Mei LU, Jiatian LI, Wen LI, Mihong HU, Jiaxin YANG
Remote Sensing Technology and Application, 2024, 39(2): 393-404.   DOI: 10.11873/j.issn.1004-0323.2024.2.0393

ClassTrainTestSVMPCAIFRFHiFiCCJSRR-VCANetSSRNMSLRR

MSLRR_

TWRF

Alfalfa103638.8123.6177.4598.6167.241009098.33100
Corn_n101 41850.6952.5675.6867.4863.8849.5374.7671.0970.92
Corn_m1082042.2239.4162.2084.8764.3073.4973.4775.5179.52
Corn1022727.0625.0654.8992.7341.3494.6386.6496.2196.78
Grass_m1047375.3760.9788.1978.4895.7888.9295.8685.6786.96
Grass_t1072084.9179.2191.1596.6095.8294.4793.3399.6498.03
Grass_P101839.6926.6450.8498.8937.4610079.8297.7897.78
Hay_w1046896.2097.3310096.8899.5795.7391.75100100
Oats101014.1821.2730.7710013.77100100100100
Soybean_n1096252.2639.9669.6785.3062.3676.1777.5484.8386.75
Soybean_m102 44566.8963.4687.6170.4978.6965.3883.9389.9191.90
Soybean_c1058333.1533.6377.3684.1568.0371.9079.8087.3291.56
Wheat1019579.5678.7576.8699.3390.4099.1898.0899.4999.49
Woods101 25591.3287.9797.9793.6496.5691.6893.4590.9197.10
Buildings1037638.2335.2878.7089.6573.6281.4983.2991.6592.69
stone108383.4884.7296.7599.2890.7599.5297.0295.7897.95
OA//59.44±0.0354.60±0.0379.14±0.0381.97±0.0274.93±0.0275.49±0.0180.63±0.0487.04±0.0389.05±0.02
AA//57.13±0.0353.11±0.0276.01±0.0589.77±0.0171.22±0.286.38±0.0187.42±0.0291.51±0.0992.96±0.08
Kappa//54.47±0.0349.27±0.0476.51±0.0479.69±0.0371.76±0.0272.44±0.0377.97±0.0585.20±0.0487.48±0.03
Table 2 Classification accuracy of different methods for Indian Pines
Other figure/table from this article