Figure/Table detail

Fusion of Multiscale Low-rank Representation and Two Way Recursive Filtering for Hyperspectral Image Classification
Mei LU, Jiatian LI, Wen LI, Mihong HU, Jiaxin YANG
Remote Sensing Technology and Application, 2024, 39(2): 393-404.   DOI: 10.11873/j.issn.1004-0323.2024.2.0393

ClassTestTrainSVMPCAIFRFHiFiCCJSRR-VCANetSSRNMSLRR

MSLRR_

TWRF

Weeds_1101 99997.6097.1897.0399.4599.9599.8787.18100100
Weeds_2103 71698.9398.1899.9899.4699.4799.6499.8299.68100
fallow101 96688.3490.3599.8198.1193.5197.2295.0689.35100
fallow_P101 38498.3198.5791.4798.9299.1799.5598.7398.6698.36
Fallow_s102 66895.9697.0199.6397.7593.0499.5796.7296.6398.34
stubble103 94999.8299.8899.9297.6893.5399.8099.8899.7399.95
Celery103 56995.7393.2198.8998.8398.8698.9499.9299.5999.92
Grapes1011 26171.6268.5697.4866.3776.5870.8982.7180.9998.43
Soil106 19399.4797.7499.9999.7698.5298.8699.3298.02100
Corn103 26879.9886.7199.6684.3995.6586.1696.1988.2898.27
Lettuce_4101 05883.0087.0998.1494.0491.0095.4395.1296.77100
Lettuce_5101 91791.8486.9897.6599.9395.6299.9597.2295.3398.59
Lettuce_61090688.7588.4992.7199.4477.5598.7997.3198.1397.99
Lettuce_7101 06090.9895.7591.6595.1494.1595.2598.6796.0798.51
Vinyard_U107 25849.8049.1279.7076.8453.4277.6275.5562.2599.37
Vinyard_T101 79797.2092.2299.9692.7599.5791.9399.8897.3999.91
OA//82.71±0.0282.16±0.0295.07±0.0187.92±0.0384.94±0.0289.23±0.0195.07±0.0388.94±0.0199.23±0.01
AA//89.21±0.0189.19±0.0196.48±0.0193.68±0.0191.22±0.194.34±0.0194.96±0.0393.55±0.199.23±0.08
Kappa//80.85±0.0280.20±0.0294.52±0.0286.61±0.0383.29±0.0288.04±0.0189.50±0.0487.66±0.0199.15±0.04
Table 4 Classification accuracy of different methods for Salinas
Other figure/table from this article